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Quantum Hall bilayer systems at filling fractions near V=%+% undergo a transition from a compressible

phase with strong intralayer correlation to an incompressible phase with strong interlayer correlations as the
layer separation d is reduced below some critical value. Deep in the intralayer phase (large separation) the
system can be interpreted as a fluid of composite fermions (CFs), whereas deep in the interlayer phase (small
separation) the system can be interpreted as a fluid of composite bosons (CBs). The focus of this paper is to
understand the states that occur for intermediate layer separation by using trial variational wave functions. We
consider two main classes of wave functions. In the first class, previously introduced in Méller et al. [Phys.
Rev. Lett. 101, 176803 (2008)], we consider interlayer BCS pairing of two independent CF liquids. We find
that these wave functions are exceedingly good for d= ¢, with € as the magnetic length. The second class of
wave functions naturally follows the reasoning of Simon er al. [Phys. Rev. Lett. 91, 046803 (2003)] and
generalizes the idea of pairing wave functions by allowing the CFs also to be replaced continuously by CBs.
This generalization allows us to construct exceedingly good wave functions for interlayer spacings of d=< € as
well. The accuracy of the wave functions discussed in this work, compared with exact diagonalization, ap-
proaches that of the celebrated Laughlin wave function.
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I. INTRODUCTION

In bilayer quantum Hall systems at filling fraction v:%
+ %, at least two different quantum states of matter are known
to occur, depending upon the spacing d between the layers.!
For large enough spacing, the two layers interact very
weakly and must be essentially independent v=% states,
which can be described as compressible composite fermion
(CF) Fermi seas.” So long as the distance between the two
layers is very large, there are very strong intralayer correla-
tions but very weak interlayer correlations (although, as we
will discuss below, even very weak interlayer correlations
may create a pairing instability at exponentially low
temperatures®). Conversely, for small enough spacing be-
tween the two layers the ground state is known to be the
interlayer coherent “111 state,” which we can think of as a
composite boson (CB), or interlayer exciton condensate,*
with strong interlayer correlations and intralayer correlations
which are weaker than those of the composite fermion Fermi
sea.! While the nature of these two limiting states is reason-
ably well understood, the nature of the states at intermediate
d is less understood and has been an active topic of both
theoretical>>~'® and experimental interest.!”-?’ Although
there are many interesting questions remaining that involve
more complicated experimental situations, within the current
work we always consider a zero-temperature bilayer system
with zero tunneling between the two layers and no disorder.
Furthermore, we only consider the situation of V=%+%
where the electron density in each layer is such that n;=n,
=B/(2¢,) with ¢y=hc/e the flux quantum and B the mag-
netic field. Finally we assume that electrons are fully spin
polarized, we neglect the finite extension of the wave func-
tions in the z direction, and we always assume that the mag-
netic field is precisely perpendicular to the plane of the
sample.
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Our main focus in this work is on the nature of the tran-
sition between interlayer 111 (CB) state and the intralayer
Fermi liquid (CF) state. Currently, contradictory conclusions
about the nature of the transition may be drawn from the
literature. The experiments are complex and are frequently
hard to interpret (and may require assumptions beyond the
simplifying assumptions made in the current paper). While
some of the experiments!’~?? point toward a continuous tran-
sition between two phases, it is not clear whether this could
actually be a first-order transition smeared by disorder.?
There is no doubt, however, that a notable change in behav-
ior takes place in the approximate vicinity of d/€(~ 1.7 with
€o=\¢py/ B as the magnetic length.

Theoretically, the situation has also remained unclear.
Several theoretical works®?®2° found indications of a first-
order transition near d/€,~ 1.3, whereas others have found
no indication for a first-order transition and evoke a continu-
ous evolution of correlations,!? and indications of a continu-
ous transition occurring near d/{,~1.6.3

Description of the phases that occur in the bilayer system
has also been quite a challenge. Some very influential works
have pointed to the possibility that a number of exotic phases
could be lurking within this transition as well>%-111431 In
particular, it has been suggested®'!!?> that the bilayer CF
Fermi sea is always unstable to BCS pairing from weak in-
teractions between the two layers (due to gauge field fluctua-
tions). Some of these works'""'? further concluded that the
pairing of CFs should be in the p,—ip, channel, which would
be analogous to the pairing that occurs in single layer CF
systems to form the Moore-Read Pfaffian state3>33 from the
CF Fermi sea. However, these works did not provide any
numerical evidence supporting these claims.

Recent work by the current authors'? has shed consider-
able light on the subject. In this work, compelling numerical
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evidence was given that for d/€,= 1 the ground state is well
described as a CF-BCS paired phase, although the pairing
channel is p,+ip, rather than the previously predicted p,
—ip,. Explicit pairing wave functions were shown to have
extremely high overlaps with the exact ground state for small
systems. This work will be described in more detail below.

A somewhat different approach has also been proposed by
some of the present authors and collaborators** in order to
understand the transition between the phase at large d and
the 111, or CB phase at small d. In that work, a set of trial
wave functions was constructed to attempt to describe the
crossover. This theory (to be discussed in depth below) pro-
vides an intuitive picture for the transition from the CF-
liquid product state to the 111 state in terms of an energy
trade-off between intralayer interaction energy and interlayer
interaction energy. At large layer separation d, CFs fill a
Fermi sea. These CFs can be thought of as electrons bound to
a pair of correlation holes within the same layer. At small
layer separation the 111 state can be thought of as a conden-
sate of interlayer excitons or composite bosons. These com-
posite bosons are formed by electrons bound to a correlation
hole in the opposite layer, which is in fact a true hole of
charge +e, just as a Laughlin quasihole on top of a v=1
quantum Hall liquid. Additionally, CBs carry a single corre-
lation hole in the same layer. Within the theory of Ref. 34, at
intermediate d wave functions were introduced with some
density of CFs having particle-hole binding within the layer
and some density of CBs having particle-hole binding be-
tween layers. As the distance d between the layers is con-
tinually reduced, the CFs are continually replaced by CBs
and the intralayer correlation is replaced by interlayer corre-
lations.

While physically appealing, this description of the transi-
tion is clearly incomplete in that it considers CFs and CBs as
independent types of particles, though in reality all of the
electrons must be identical. Both the CFs and CBs consist of
electrons bound to correlation holes or vortices, or with “flux
attached” in the Chern-Simons language. The difference be-
tween the CBs and CFs is whether they are bound to corre-
lation holes in the opposite layer (CBs) or only within the
same layer (CFs). However, nothing prevents electrons from
breaking free from their correlation holes and becoming
bound to a different correlation hole—which could then
change the identity of a particle from a CB to a CF and vice
versa. Indeed, whenever two composite bosons in opposite
layers approach the same coordinate position, they can
“trade” their accompanying correlation holes (vortices or
flux quanta) and emerge as two composite fermions. In terms
of a second quantized notation, with ¢ representing a com-
posite fermion annihilation operator, and ¢ representing a
composite boson annihilation operator, such scattering pro-
cesses would be described by an interaction term

)\kl,kz,k3,k4l/f;,kl lﬁI,k2¢T,k3¢L,k4 +H.c. (1)

with T and | representing the two layers and A as a coupling
constant (and H.c. denoting the Hermitian conjugate). If the
bosons happen to be condensed, there is a large expectation
for the CBs to be in a k=0 state. Invoking momentum con-
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servation, the most dominant such interaction term is then of
the form

Nt s ]k (D1 ac0b o) + Hec (2)

which we immediately recognize as a pairing term for the
composite fermions. Thus we see that the mixed CF-CB pic-
ture is quite closely linked to the idea of CFs forming a
CF-BCS state.

As discussed above, our numerics indicate that CF pairing
occurs in the p,+ip, channel. An equivalent statement is that
the two-CF pair wave function acquires a phase of +27 as
two paired electrons in opposite layers are taken in a clock-
wise path around each other. We will further argue that this is
the only pairing symmetry that is compatible with coexist-
ence of CFs and CBs. The argument rests on the fact that for
the 111 wave function, taking any electron around any other
electron in the opposite layer will result in a +27 phase. As
will be further illustrated below, compatibility of CBs that
make up the 111 state with the CFs that compose the p-wave
paired CF state requires that these phases match, and will
require that the p-wave pairing is of p,+ip, type.

In the current work, we construct explicit wave functions
for interlayer paired CF states. As in BCS theory, the shape
of the pairing wave function is treated in terms of a set of (a
very small number of) variational parameters. As previously
discussed in Ref. 13 we find that for interlayer spacings d
={, our trial states are exceedingly good representations of
the ground state. However, at spacings below d= ¢, we find
that the simple paired CF states are no longer accurate. We
then return to the above described idea of CF-CB mixtures.
With only one additional variational parameter representing
the probability that an electron is a CB versus being a CF, we
obtain a family of wave functions that nearly match the exact
ground state for all values of d/ €.

The general structure of this paper is as follows. In Sec.
II, we will discuss in detail the particular wave functions to
be studied. First, in Sec. Il A we review the composite fer-
mion Fermi liquid in single layer systems, and focus on some
particular aspects that help us construct bilayer states with
paired CFs, previously introduced in Ref. 13, in Sec. II B.
We then turn to the discussion of the interlayer coherent 111
state in Sec. II C and how it too can be interpreted as both a
state of CBs and as a paired state. In Sec. II D we discuss the
merging of the physics of CBs with that of the paired CF
states to yield a mixed fluid wave function which incorpo-
rates both types of physics. Crucially, we show in this section
that p,+ip, is the only pairing symmetry of CFs that can
coexist with CBs. We note that wave functions discussed in
Sec. II D include the mixed CB-CF wave functions of Ref.
34 as a special case.

Having constructed a family of variational wave func-
tions, we proceed to test the validity of this approach based
on numerical calculations on the sphere presented in Sec. III.
Data from Monte Carlo (MC) simulations of the paired CF
and mixed fluid wave functions are compared with data ob-
tained from exact numerical diagonalizations of the Coulomb
Hamiltonian for model systems of up to 14 electrons in Secs.
IIT A and IIT B. In Sec. III C, we discuss the properties of the
various trial states via the occupation of CF orbitals and in
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analogy to a BCS superconductor. Section III D is devoted to
a discussion of order parameters that characterize the system.
In Sec. IV we further discuss our understanding and interpre-
tation of our results. We also briefly discuss a number of
issues including the effects of finite temperature, layer den-
sity imbalance, tunneling between the layers, and electron
spin. Consequences for electronic transport are also ana-
lyzed. Finally we discuss the expected transport properties of
the phases we describe. In Sec. V we conclude and briefly
summarize our results.

We have relegated to the appendixes a number of details
that are not in the main development of the paper. In Appen-
dix A, we discuss in detail how to adapt the mixed fluid
wave functions to obtain a representation on the sphere.
More numerical results for a restricted class of wave func-
tions, corresponding to filled CF shells on the sphere, are
discussed in Appendix B. Further details about the procedure
applied for the optimization of trial states are elaborated in
Appendix C. Finally, Appendix D discusses some properties
of the two-electron correlation functions in the bilayer sys-
tem.

II. WAVE FUNCTIONS FOR THE QUANTUM
HALL BILAYER

In this section we review the various trial wave functions
that we will be studying throughout this paper. To the expe-
rienced reader the discussion of the composite fermion liquid
(Sec. T A) and the 111 state (Sec. IT C) will be mostly re-
view. This material is nonetheless included in depth to em-
phasize a few key points that guide our reasoning.

For simplicity, in this section we will consider infinite-
sized systems on a planar geometry so that we can write
wave functions in the usual complex coordinate notation.
Here and in the following, z;=x;+iy; is the complex repre-
sentation of the coordinates of particle i (with the overbar
representing the complex conjugate), and the usual Gaussian
factors of e~>## (20" are understood to be included in the
measure of the Hilbert space and will not be written explic-
itly for simplicity of notation. For bilayer states, we note
coordinates in the second layer as w;, using the same com-
plex representation. In Sec. III below, we will convert to
considering wave functions on the sphere, where we actually
perform our numerical calculations. The changes required to
adapt our theory to the spherical geometry are discussed in
Appendix A.

A. Composite fermion liquid

For bilayer systems at infinite layer spacing, the interlayer
interaction vanishes and the two layers can be considered as
independent V=% systems. For such single layer V=% Sys-
tems, the composite fermion approach? has been remarkably
successful in describing a great deal of the observed physics.
In this picture,?3> the wave function for interacting electrons
in magnetic field B is written in terms of the wave function
for free (composite) fermions in an effective magnetic field
B=B-2n¢, with the density of electrons n. Each fermion is
also attached to two vortices (or correlation holes) of the
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wave function (Jastrow factors) resulting in the following
type of wave function:

=P I (z,- Zk)zdet[¢i(zj’zj)]’ 3)

k<p

where ¢; are the orbitals for free fermions in the effective
magnetic field B, and Py is the projection operator that
projects to the lowest Landau level (LLL). The determinant
in Eq. (3) above describes a Slater determinant of electrons
at z; filling states given by the orbitals ¢;.

For the special case v=% the CFs experience zero effec-
tive field and behave similarly as electrons at zero field,
forming a Fermi sea.>3%37 For an infinitely extended plane,
plane waves form a basis of single particle orbitals for par-
ticles in zero effective magnetic field such that

Bilz) = ™. (4)

Since k-r=%(k2+kz) (with k being the complex representa-
tion of the vector k) and the projection on the LLL trans-
forms 7— —2(9—(1, the plane-wave factors become translation
operators under projection.’® This yields

\1’1/2 = A{H ([Zl + 6(2)]([] - [ZJ + €(z)kj])2H eikiZi/Z} , (5)
i<j i
where A is the antisymmetrizing operator that sums over all
possible pairings of the z;’s with the ;’s, odd permutations
added with a minus sign. We see that the fermions are still
bound to zeros of the wave function, but the positions of the
zeros (correlation holes) are moved away from the electrons
by a distance ¢ gk, which is given in terms of “momentum” k.
In order to minimize the Coulomb energy, these distances
should be minimized, but simultaneously, all the k; have to
be different or the wave function will vanish on antisymme-
trization. Thus, to minimize potential energy, the k;’s fill up a
Fermi sea of minimal size. This is how the potential energy
becomes the driving force for establishing the Fermi sea.
Although this naive picture of charged dipole dynamics is
not strictly true in the way that it is presented here,3® there
are several ways to more rigorously embody this type of
dipolar Fermi sea dynamics in a theory of the lowest Landau
level, which give credibility to this type of simplified
argument.*0-42

Unfortunately, the projection P in Eq. (3) is exceedingly
difficult to implement numerically for large systems. To cir-
cumvent this problem, Jain and Kamilla*® proposed a rewrit-
ing of the composite fermion wave function as

V=T (z, - 20 det §i(z))]. (6)
k<p
where
bi(z) = -I_/_'IPLLL[(ﬁi(Zj’Z_j)-Ij]’ (7)

with J;=11;,(z4~2;) and the ¢; chosen such as to represent
wave functions corresponding to a filled Fermi sea.** This
form, while not strictly identical to the form of Eq. (3), is
extremely close numerically and has equally impressive
overlaps with exact diagonalizations*® and is therefore an
equally good starting point for studying composite fermion
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physics. However, in contrast to the form of Eq. (3), the
forms of Egs. (6) and (7) are comparatively easy to evaluate
numerically and therefore allow large system quantum
Monte Carlo calculations.®3 In this paper, we have used this
type of approach.

In order to obtain a wave function for the bilayer system
at v:%+% and infinite layer separation, a simple product
state of two composite fermion liquids (CFL) is appropriate,

W(d — ) =|CFL) ® |CFL). (8)

At finite layer separation, however, correlations between the
layers are expected to exist and have been suspected to re-
semble a paired state.>'123145 A5 we will see below, the
product state (8) may be regarded as a particular paired state
whenever the Fermi surface is inversion symmetric with re-
spect to k=0, i.e., the center of the Fermi sea. In these cases,
for each particle in layer one occupying a state with momen-
tum Kk, there exists its partner in layer two occupying a state
with momentum -k.

B. Paired CF bilayer state

We now consider how to write a trial wave function for an
interlayer paired composite fermion state, which we suggest
should be an accurate description of the bilayer system when
the spacing between the layers is large. The material in this
section is mostly a review of material introduced in Ref. 13.
As a starting point, let us take the well-known BCS wave
function in the grand canonical ensemble*®

|\I’> = H (”k + Ukei(PaltlajkT)|0> 9
k

with the normalization |u[?+[vy/*=1 and where aj, creates a
particle in layer T with momentum k. Note that the u’s and
v’s are properly understood here as variational parameters of
the BCS wave function. Next, we rewrite this wave function
in an unnormalized form by multiplying all factors by u;l
and defining gy =vy/uy, soO

=110+ gkei‘oaﬂlaim)m). (10)
K

Finally, we project to a fixed number 2N of particles
(i.e., switch to canonical ensemble) by integration over
Jd exp(=iN¢) such that we retain exactly N pair creation
operators. This yields

= X

11 guay a4 110). (11)
{kl,...,kN} k;

In the first quantized language, we can write

¥ =det[g(r;,r))] (12a)
where g is the Fourier transform
glryr) = 2 g™ i, (12b)
K

Note that the exponential factor of the Fourier transform can
be regarded as a product of two basis functions ¢ (r)=e™*"
on the plane, i.e.,
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D) = e = gy () yry). (13)

With this in mind, similar paired wave functions can be writ-
ten for more general geometries with arbitrary basis func-
tions. In the following, we construct paired states for com-
posite fermions in the bilayer system (denoting particles in
the upper layer as z and those in the lower layer as w). As in
Sec. I A we will multiply our fermion wave function with
composite-fermionizing Jastrow factors and project to the
lowest Landau level yielding

¥ = PLLLH (zi— Zj)2H (w; = Wj)zdet[g(Zg,Wj)]

i<j i<j
= Pro det[ I g (ziw))], (14)

where we have defined “single particle” Jastrow factors

F=11 (-2, (15a)
k#i

I =TT (wi=wy). (15b)
k#i

In order to handle the projection numerically, we follow the
recipe of Jain and Kamilla [Eq. (7)] discussed above, bring-
ing the Jastrow factors inside the determinant and projecting
individual matrix entries. This prescription applies to the bi-
layer case in a similar manner as for the single layer case
(since the total Hilbert space of the bilayer system may be
represented as a direct product of the space for each layer
and projection in one space does not affect the other). We
then obtain the final paired wave function:

‘PCF-BCS = det[gF(Zi9 W/)] s ( 163)

where

gF(Zi’Wj) = 2 gkffz-]_;‘vwak(li) %—k("‘{j) (16b)
k

We denote the projected CF orbitals ¢ as defined in Eq. (7)
above. By convention, the single particle Jastrow factors J;
are kept inside the function gg so that gg(z;—w)) is actually a
function of all of the z’s and w’s through the J’s.** The sub-
script F here has been chosen to indicate that these are paired
composite Fermions. Note that in the above expressions k
may stand for a general set of orbital quantum numbers (this
will be important for spherical geometry where the free wave
functions are spherical harmonics rather than plane waves).

The g\ ’s defining the shape of the pair wave function are
variational parameters, analogous to the usual u’s and v’s.
These parameters must be optimized to obtain a good wave
function, although the optimal solution will certainly depend
on the layer separation d. We also note that expression (15)
can describe pairing in arbitrary pairing channels depending
upon the choice of gy and the basis set {¢}. As a general
definition, when the pair wave function has the short distance
form

), (17)

with 4(0) # 0, we say this is [-wave pairing. However, note
that g(z,w) should asymptotically approach zero for |z—w|

g(Zth) * (z;— W_j)l X h(|z,~ - W;
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— oo, such that the pair wave function can be normalized. We
also frequently use the atomic physics nomenclature where
[=0 is termed s wave, /=1 is the p wave, and so forth.
Furthermore, /=+1 is denoted as p,+ip, pairing, whereas [
=-1is p,~ip, pairing. (Unfortunately, in the literature “p,
+ip,” is used to denote either chirality.) Note that the pairing
symmetry is independent of whether we move the J% and
J" factors inside or outside of the function gg.

The choice of the pairing channel [ affects the precise
value of the flux Ny=2(N—1)+/ at which the trial state (15)
occurs. For systems with finite NV, we can thus distinguish the
different possible pairing channels by studying the flux Ny
for which the ground state of the system is incompressible as
a function of system size N. Such a study has been under-
taken in depth in Ref. 13 and it was found clearly that p,
+ip, pairing is supported by the numerical data. As the ef-
fective interaction of composite fermions derives from the
interaction of the underlying electrons in a nontrivial manner,
the pairing channel realized in the bilayer system was not
reliably predicted by various theoretical approaches.®!!:3!

A case of particular interest is when the variational pa-
rameters gy are defined as follows:

anything nonzero, |k| = kg (18)

Bk = 0, otherwise.
It is easy to show that this choice of variational parameters
recovers the product state of two composite fermion liquids

[Eq. (8)].

C. 111 state

When the spacing between the two layers becomes small,
the bilayer system forms an interlayer coherent state. A num-
ber of different approaches have been used to understand this
state and a large amount of progress has been made using a
mapping to an isospin easy-plane ferromagnet.”®#’ In this
work, however, we will follow the Laughlin approach of
considering trial wave functions in a first quantized descrip-
tion. When the distance between the two layers becomes
zero, the exact ground-state wave function of V=%+% is
known to be the so-called 111 state?**8

‘1’111=H(Zi—2j)1_[(Wk—Wz)H(Zr—Ws), (19)

i<j k<l r,s

where again we use z to represent particles in the upper layer
and w to represent particles in the lower layer. In contrast to
the CF state, Eq. (19) contains only one Jastrow factor be-
tween particles in the same layer so that the wave function is
properly antisymmetric under exchange of particles in the
same layer. Thus, no additional determinant is needed to fix
the symmetry as was the case in the CF state. In addition, Eq.
(19) includes a Jastrow factor between particles in opposite
layers. Consequently, there is no amplitude for finding two
particles at the same position in opposite layers. This can be
interpreted as each particle being bound to a hole in the
neighboring layer. One can say the 111 state is composed of
interlayer excitons.* Another terminology is the Chern-
Simons language where the electrons are transformed into
bosons bound to flux quanta, where each flux quantum pen-

PHYSICAL REVIEW B 79, 125106 (2009)

etrates both layers. These “composite bosons” can be thought
of as an electron bound to a vortex of the wave function in
each layer. Condensing these bosons gives the wave function
Weg=1 for the composite particles and the transform back to
an electron wave function (by reattaching the Jastrow fac-
tors) yields Eq. (19).

However, it is also useful to rewrite the 111 wave function
using the Cauchy identity

1
H (zi— Z_,')H (wi—w;) = H (z;—w;)det (20)
i<j i<j ij i~ Wi
which yields
1
\P111=det|: i|H(Zi_Wj)2' (21)
G=Wilij

This notation resembles the form of a general paired bilayer
state as discussed above in Sec. II B. This resemblance has
been noted previously,** and from the form of the 1/(z;
—w;) factor, it has been concluded that the pairing symmetry
is (p,—ip,).!" Here, we would like to propose a different
interpretation. Since the Jastrow factors outside the determi-
nant cancel the apparent singularity in Eq. (21), the phase
obtained by taking an electron around its partner is actually
+24r rather than —2 7. In fact, for the 111 state it is clear from
the explicit form (19) that as any electron is taken around
another electron in either layer, one accumulates a phase of
precisely +2r. For clarity, it is useful to move the Jastrow
factors in Eq. (21) inside the determinant. We obtain

Wy = det[gp(z;,w))], (22)
where
T
ge(z;,w)) = —LZ' N (23)

J
and the interlayer partial Jastrow factors are defined by

J = I Gz—-wo, (24a)
k

JE=TT (wi=z0). (24b)
k

Here, the subscript B means that we have a pairing wave
function for composite Bosons. This form suggests more that
gs(z;,w;) represents pairing of p,+ip, type since a phase of
+27 is obtained when z; moves around w; rather than 2.
As suggested by Ref. 11, it seems natural to have the same
pairing symmetry for d> €5 and d= €. This then suggests
that the relevant pairing symmetry for the composite fermi-
ons is p,+ip, rather than p,—ip,. We emphasize that it is
mostly just a matter of nomenclature whether we label the
111 state as having p,+ip, symmetry or p,—ip, symmetry.
This ambiguity is a reflection of the fact that one can attach
Jastrow factors to electrons to construct new particles. De-
pending on how the Jastrow factors are attached, the pairing
can appear either p,+ip, or p,—ip,. What is crucial, how-
ever, is that the wave function always picks up a phase of
+27 when z; moves around w;—a behavior identical to that
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of the p,+ip, paired CF phase. This similarity of the 111
phase and the p,+ip, paired CF phase is crucial in the next
section.

D. Mixed CF-CB state

In Sec. II B, we establish the general expression for an
interlayer-paired CF state in bilayer (15) which we believe
should yield appropriate ground-state wave functions for
large d/ €. Furthermore, in Sec. II C we determine a way to
write the 111 (CB) state, which is exact at vanishingly small
d/ €, as a paired state. Both these types of wave functions
can be written as determinants of pairing functions gg and
gm, respectively. Now, following the ideas of Ref. 34, we
consider transitional wave functions that include both the
physics of the CFs and the physics of the CBs. We propose
the following extremely simple generalized form

WEFCE = det[ G(z;,w))] (252)

with

G(Zi’wj) = gF(Zi,WjQ{gk}) + CBgB(Zi’Wj)’ (25b)

where cg is an additional variational parameter representing
the relative number of CBs versus CFs. Note that as above,
gr is a function of the variational parameters {g;} which de-
scribe the shape of the pairing wave function.

In Sec. IIT and Appendix A we will translate these wave
functions onto the spherical geometry for which we have
performed detailed numerics. To elucidate the meaning of
this linear interpolation between composite fermion and
composite boson pairing functions, it is useful to consider
more carefully the physics of the fermion pairing described
by Eq. (16). Each entry in the matrix gp(z;,w;) is a sum of
many terms [see Eq. (16b)] with each term representing the
filling of particles z; and w; into a particular pair of CF or-
bitals (one in each layer). Upon multiplying out the entire
determinant, each term will include precisely N occupied CF
orbitals, and as required by Pauli exclusion, no orbital may
be occupied more than once. Terms with double occupation
of the same orbital cancel out by antisymmetry of the deter-
minant, even for nonorthogonal basis functions ¢,;. The am-
plitude that a particular orbital is occupied is determined by
the coefficients g [compare Eq. (11)]. Now, let us consider
instead the pairing function G(z;,w;) which has both the fer-
mionic gp terms as well as the bosonic g terms [see Eq.
(25b)]. When we calculate the determinant in Eq. (25a), each
G(z;,w)) will be the sum of a term where the CB orbitals are
filled for particles z; and w; (the g terms) and several terms
where z; and w; instead fill a pair of CF orbitals. When we
multiply out the entire determinant it results in a linear com-
bination of all possible choices of filling M CF orbitals and
N—-M CB orbitals. As with the case for the paired CF wave
function, the amplitude of different orbitals being filled is
determined by the coefficients g) for the fermions and cp for
the bosons.

With this reasoning, we can actually reconstruct the
mixed CB-CF wave functions from Ref. 34 as a special case
of Eq. (25). To this end, let us fix ¢y to some constant value,
e.g., cg=1, and for all other variational parameters g let us
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use a step function [analogous to Eq. (18) where we repre-
sented the filled Fermi sea as a paired state], but with a
reduced Fermi-momentum (kp)g:

) {w, K = (k)
-

. (26)
0, otherwise

Where a very large gy is chosen, the corresponding state is
forced to be occupied (the resulting normalization suppresses
anything that does not include the maximal possible number
of gy terms). Due to the Pauli exclusion principle, every CF
state may be occupied only once, and consequently the par-
ticles remaining once the CF sea is filled up to the reduced
Fermi momentum (kp)p can only occupy composite boson
orbitals. The choice (26) results in the probability for a CF to
occupy a state with |k|=<(ky)r to be equal to unity, which
corresponds to a filled shell configuration. This construction
is “equal” to the mixed CF-CB construction from Ref. 34.
(By “equal” here we mean that the two constructions are
equivalent up to the differences between projection prescrip-
tions in the original Jain construction [Eq. (3)] and the Jain-
Kamilla construction [Eq. (6)].) In Appendix B, we show
explicitly that the filled shell states among those analyzed in
Ref. 34 can be reproduced accurately by choosing gy as in
Eq. (26).

It is very useful to remind the reader that both CFs and
CBs could in principle experience effective magnetic (or
Chern-Simons) fields due to their attachment to Jastrow fac-
tors. As in Ref. 34, we can write expressions for the effective
magnetic field B” seen by fermions () or bosons () in
layer o=1 or | as

Bg =B = 2¢opg — Pops. (27)

BE—:B—QbOp, (28)

where B is the external magnetic field, ¢, is the flux quan-
tum, p=p'+p! is the total density in both layers combined,
pg is the density of CFs in layer o and pB=p]g+p]i3 is the
density of CBs in both layers combined. It is important to
note that precisely at ¥=1/2+1/2, independent of the rela-
tive densities of CBs and CFs (so long as it is symmetric
between layers), at mean-field level, both species experience
zero total magnetic field. For the mixed CF-CB state with CF
pairing, the number of CFs present may be uncertain. As
mentioned above in Sec. I, a pair of CFs in opposite layers
can transform into a pair of CBs in opposite layers. It is easy
to see from Egs. (27) and (28) that this process leaves the
effective field seen by all species unchanged.

In contrast to the formula for the mixed fluid states given
in Ref. 34, the present form [Eq. (25)] with g, according to
Eq. (26) allows for an efficient numerical calculation. In our
present approach, as explained below, the antisymmetry of
the wave function is a natural result of the determinant (re-
quiring OCN? numerical operations), whereas the wave func-
tions from Ref. 34 require explicit antisymmetrization, an
operation that requires much computation power with an op-
eration count scaling exponentially with the system size. We
emphasize again that while Ref. 34 considered a limited fam-
ily of wave functions without CF pairing, the current ap-
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proach [Eq. (25)] allows for the handling of both nontrivial
CF pairing and CF-CB mixtures simultaneously.

We now focus upon the question of whether, or under
which circumstances, Eq. (25) is a valid lowest Landau level
wave function. First, to test the requirement of antisymmetry,
consider the interchange of two particles in the same layer,
e.g., z;<z;, thus in all columns k:

g8z, wp) = gp(z;wy), TOWS i,j
. (29a)
gs(zpwp) — gplzwy), V rows [ & {i,j},
ZisWy) < gplz;, W), TOWS I,
gr( 1) < gl i %) J (29b)

gr(zpwy) — grlzpwy), YV rows [ & {i,j},

In other words, exchanging two particles amounts to inter-
changing two rows of the matrix (G);;.

The second condition to be checked is whether the pro-
posed wave function is properly homogeneous, implying that
it is an angular momentum eigenstate as required for the
ground state of any rotationally invariant system. This con-
dition is known to be true for both limiting cases—the 111
and the paired CF states. For it to remain true for the mixed
CF-CB state, it is sufficient to require that (gg),; and (gg);; be
of identical order in all variables. To check this it is sufficient
to count the order (or number of zeros) that occur for a given
variable in g;;. For example, let us choose to look at the
variable z;. For i # 1 we have gg(z;,w;)=J;"J;*/(z;=w;). The
variable z; occurs only inside of J7* and occurs only once.
Therefore, it is first order in z;. Similarly for i# 1, in
gr(zi,w))=g(z;,w))J7°J;" the variable z; occurs only inside
of J* and occurs only one time, so that it is also first order.
Let us now look at the term i=1. In this instance, we have
gs(z1,w))=J7"J7*/(z;—w;) which has z; occurring N times in
J5", once in J5" and once in the denominator, resulting in a
total order N. For gg(z;,w;)=g(z;,w;)J{J;" there are N-1
powers of z; in J{* and additional / powers in g(z;,w;) if we
have [-wave pairing [see Eq. (17)], giving a total number of
powers of z; equal to N—1+/. Thus, in order for this to
match the degree of gg(z;,w;), we must choose /=+1 or
Py+ipy pairing of the fermions. It is clear that choosing any
other pairing symmetry would result in a wave function that
is nonhomogeneous (therefore not an angular momentum
eigenstate) upon mixing fermions with bosons. While we
cannot rule out some first-order phase transition between
some other pairing symmetry for the CFs and a coherent CB
phase, it appears to us that p,+ip, is the only symmetry
compatible with coexistence of CBs and CFs.

III. NUMERICAL RESULTS

In this section, we present a numerical study of the varia-
tional wave functions discussed previously. In particular we
focus upon Eq. (25), which includes Eq. (14) as an important
special case. As our trial wave functions are given as varia-
tional states, we first need to optimize the variational param-
eters (gx,cB) to obtain the optimal trial state for each layer
separation d. Given an explicit expression for a trial wave
function at layer separation d, Monte Carlo may be used to
numerically evaluate observables such as the ground-state
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energy, which we compare to similar results calculated using
exact diagonalization methods. We also evaluate the overlap
of the trial states (25) with the exact ground-state wave func-
tions. We find that our trial wave functions provide ex-
tremely accurate representations of the exact ground states.

To avoid complications associated with system bound-
aries, except in Sec. III D 3 below, we choose always to
work with the spherical geometry®® with a monopole of N ®
=2gq flux quanta at its center. We give each electron not only
a positional coordinate, but also a layer index which may be
either T or |. N electrons are put on the surface of the sphere
where half of them occupy each layer (N=2N,=2N;=2N,).
We assume the limit of no tunneling between the two layers,
therefore, these can be thought of as distinguishable elec-
trons. We focus upon filling fraction V=%+% which corre-
sponds to N,=2N;—-1=N-1. This is precisely the flux at
which the 111 state occurs. Note, however, that for a single
layer the composite fermion liquid state with no effective
flux occurs at N,=2(N;—1), which differs from what we
consider by a single flux quantum. This difference in “shift”
means that we are actually considering a crossover from the
111 state to a Fermi liquid state with one additional flux
quantum. It turns out that this one additional flux quantum is
appropriate here since precisely such a shift is induced by the
[=+1 nature of the p-wave pairing (that we determined as
the appropriate pairing channel in an earlier publication'?).
On the sphere, the explicit form of the trial wave functions
(25) is defined by the expansion of the pair wave function
(16b), where the basis functions ¢, become the monopole
harmonics Y, , ,,, with qzé corresponding to p-wave pairing,
as explained in detail in Appendix A.

The interaction between electrons is taken to be the Cou-
lomb potential

Vi) =V (r)= ler]™, (30)
Vi (r)=V(r) = eleNr +d*T, (31)

where r is the chord distance between the electrons, € is a
dielectric constant, and d represents the distance between the
layers (measured in units of the magnetic length €,). Note
that for simplicity, finite well width is not taken into account.

Since our Hamiltonian is rotationally symmetric on the
sphere, we can decompose all states into angular momentum
eigenstates. Our exact diagonalization calculations determine
the ground state to be in the angular momentum L=0 sector.
The trial ground-state wave functions are also L=0. In addi-
tion to rotational symmetry, the Hamiltonian exhibits a sym-
metry under exchange of the two layers. The ground state is
found in the subspace with parity (=1)V1. Again, it is simple
to check that this is also the symmetry of our trial wave
functions.

Exact diagonalization calculations are performed here for
system sizes of N=10, 12, and 14 electrons for a large range
of values of the interlayer spacings d. In order to evaluate the
significance of our results it is useful to examine the size of
the Hilbert space in which the Hamiltonian resides. While
the full Hilbert space is very large (even for ten electrons),
once the space is reduced to states of L=0, the space is
significantly smaller. In Table I we show the dimensions of
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TABLE 1. Hilbert space dimensions of the L=0 subspace for the examined bilayer systems and several
reference states. For bilayer states two values are indicated corresponding to the fraction of states with odd
and even parity under layer exchange. The respective subspace containing the ground state is typeset in bold.
Data on the exact energies of single layer states were collected from Ref. 51. The last column indicates
overlaps of the respectively appropriate trial wave functions with the exact ground states (data from Ref. 52

or from our calculations, where errors are indicated).

v N Ny D(L=0) [Evia—Ecl/ Eg KW it P )2
545 9 2949 <1.4x1073 >(0.984(4)
3*3 6+6 11 97+155 <1.9%x 1073 >0.978(4)
7+7 13 884+715 <22x%x1073 >0.965(9)
15 6 5%107* 0.99289
18 10 5x 107 0.99273
3 21 31 5x107 0.99082
24 84 5x107* 0.98816
10 27 319 6x107* 0.984(3)
11 30 1160 7x1074 0.984(2)
8 16 8 4x107 0.9987(2)
: 10 21 52 2x107 0.9955(7)
12 26 418 2x107* 0.994(2)

the L=0 Hilbert space (and the dimensions of the even and
odd parity parts of that space) for the different size systems.
While these sizes may appear small we note that they are
typical sizes for L=0 subspaces for what are considered to be
relatively large exact diagonalizations. For comparison in
Table I we show the dimensions of the L=0 spaces for a
number of other typical quantum Hall calculations in the
literature.

For a given interlayer spacing d, we first perform exact
diagonalization to find the ground state, and then determine
how “close” we can get to this state with a variational wave
function. The variational wave function is a function of the
parameters {g,} [for both Egs. (14) and (25)] and one addi-
tional parameter cg [which we can think of as being set to
zero in Eq. (14)]. While it is clear that with enough varia-
tional parameters one can fit any result, the actual number of
variational parameters we use is quite small. First of all gy
can be assumed to be a function of |k| only. More accurately,
on the sphere the orbital states are indexed by the quantum
numbers n (the shell index) and m (the z component of the
angular momentum in the shell), and by rotational invariance
of the ground state we can assume that the variational pa-
rameters are independent of m (as detailed in Appendix A).
In other words, there is a single parameter per composite
fermion shell (or composite fermion Landau level); we label
these parameters as g,. For the system sizes available in our
exact diagonalizations, no more than five such variational
parameters are necessary to obtain satisfactory trial states.
Considering the dimensions of the symmetry reduced Hilbert
space (shown in Table I) which is much larger than five, we
conclude that the agreement of our states with the exact
ground state is nontrivial.

There are several ways to evaluate the quality of a given
trial wave function (or the “closeness” of a trial wave func-
tion to an exact wave function). For example, one could
compare the energy of the trial wave function to that of the

exact ground-state energy. By the variational principle, if one
obtains the exact ground-state energy, then the trial wave
function must be the exact ground state. Another well-known
measure of the quality of a trial wave function is the overlap
of the trial wave functions with the exact ground state. We
shall adopt these two measures of accuracy for the analysis
in the main text of the current paper.

The details of the optimization methods used to obtain the
right variational parameters for a good trial state at a given
layer separation d are explained in Appendix C. In brief,
however, we proceed as follows. If we optimize for the
ground-state energy E, a Monte Carlo estimate of the Hamil-
tonian operator (H(d)) is obtained in a very restricted basis
of states defined by the trial wave function W to be studied,
and an initial guess of variational parameters Yy
={cg,&0,&1,...}. This basis is spanned by W, and its deriva-
tives W,=0V,/dg, with respect to g,. Diagonalizing the es-
timator (H(d)) yields a new set of variational parameters,
which are used as an improved guess of . This procedure is
iterated until convergence is reached. If we optimize for the
overlap with the exact ground-state wave function, the pro-
cedure is simpler as we can directly evaluate the gradient of
the overlap 3/ (9v,)|[{(W yiat| Vexae)|>- Updating ¥ according to
a steepest descent algorithm has proven sufficient to opti-
mize the overlap. For further details, please refer to Appen-
dix C.

In addition to the energy and the overlap with the exact
ground state, one could compare the pair correlation func-
tions (both interlayer and intralayer) of the trial wave func-
tion to that of the exact ground state. Since, for pairwise
interactions, the pair correlation function completely deter-
mines the energy of the system, again, a trial wave function
that has the exact ground pair correlation function must iden-
tically be the correct ground state. Such a comparison of
correlation functions is given in Appendix D.

For very large system sizes of course we are unable to
perform exact diagonalization. Nonetheless, we are still able
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FIG. 1. (Color online) Squared overlaps of (p,+ip,)-wave
paired CF trial states [Eq. (15)] with the exact ground state, for N
=5+5, 6+6, and 7+7. For d={, extremely high overlaps are ob-
tained. However, for d < €, the CF-BCS trial wave functions are not
accurate, suggesting a phase transition around d= €.

to study this system by Monte Carlo. In such cases, the varia-
tional parameters are optimized by simply attempting to
minimize the energy of the trial state (as discussed in Appen-
dix C), though we are uncertain of the proximity of the re-
sults to the exact ground state. At present, this possibility has
not yet been fully exploited, and we limit our study of bigger
systems to filled shell states. This study is presented in Ap-
pendix B.

A. Paired CF results

In this section, we discuss the results for the paired CF
wave functions (16) with pairing in the p,+ip, channel. Fig-
ure 1 shows overlaps of our trial states with the exact ground
state for several system sizes as a function of interlayer spac-
ing. (These data have been previously presented in Ref. 13).
In Fig. 2, the relative errors of the trial state energies E;,
with respect to the ground-state energy E; are represented as
[Eyiu(d {g.})—Es(d)]/ Eg(d) for two different system sizes
of N=10 and N=14 particles. From these two figures, it is
clear that the paired CF states yield excellent trial states for
large d, whereas there is a layer separation d“® below which
the paired CF picture yields no good trial states. We find
d“®=~0.9¢, and d°®~1.1¢, for 10 and 14 particles, respec-
tively. For 12 electrons (not displayed), this value amounts to
d“B={, (see also Table II).

These results are surprising, since the regime where
paired CF states yield very good trial states extends from
infinite layer separation down to d ~ €, well below the point
where experiments observe the set in of the various phenom-
ena that are thought to be associated with spontaneous inter-
layer coherence and the presence of CBs or interlayer exci-
tons. Given the large increase in d“B between the systems
with N=10 and N=14 particles, it is not clear at present how
this extends to larger systems. A naive linear extrapolation
with respect to the inverse system size N~! based on the
above values yields d“B~1.76 in the thermodynamic limit,
which is rather close to where a transition is observed ex-

perimentally.
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FIG. 2. (Color online) Relative errors in energy of

(py+ipy)-wave paired CF trial states [Eq. (15)] in the bilayer for
N=5+5 particles (top) and N=7+7 particles (bottom). Each of the
represented curves corresponds to a different trial state, i.e., a dif-
ferent choice of parameters {g,}. The vertical axis is the fractional
energy difference of the trial wave function energy with respect to

the exact ground-state energy (Eyia—Eground)/ Eground- The largest
errors are of order 1.4X 1073 and 2.2X 1073 for N=5+5 and N
=7+7, respectively, when regarding only those layer separations
greater than d=d®, where the paired CF ansatz yields “good” trial
states. The encircled error bar indicates the magnitude of Monte
Carlo error. For comparison, the mixed fluid trial states from Ref.
34 are represented as bold lines in the upper panel (see legend).

Unfortunately extrapolation to the thermodynamic limit is
made difficult by shell filling effects. In particular, N=12
corresponds to having two CF shells filled in each layer. (The
lowest shell has two electrons per layer, and the next shell
has four electrons per layer. See Appendix B.) Thus, this
particular system size could behave differently from the N
=10 (N=14) case, where there is one CF hole (electron) in
the valence shell in each layer. Indeed, at large d, shell filling
effects are quite strong, as was discussed in depth in Ref. 13.
In particular, it was found that for large enough d, the system
always follows Hund’s rule,>® maximizing the angular mo-
mentum of the valence shell within each layer. Only for sys-
tem sizes with filled shells (such as N=12), or when there is
a single electron or single hole in the valence shell in each
layer (such as N=10 and N=14) can the Hund’s rule state be
expressed as a CF-BCS wave function in the form of Eq.
(16). For other cases, the large d limit of the CF-BCS states
differs from the Hund’s rule state. However, as argued in
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TABLE II. Scaling with system size of the maximal value of the nonzero excitonic superfluid order
parameter for paired CF states Sy, in the absence of CBs. Pure paired CF trial states are relevant above the
layer separation d“B, as discussed in Sec. II D. The last column indicates an (overly naive) linear extrapola-

tion over N™! to the thermodynamic limit.

N/2 4 5 6 7 8 o
S 0.64 0.42 0.38 0.30 0.20 <0
d°B 0.87(3) 0.99(4) 1.13(5) 1.76(11)

Ref. 13, this Hund’s rule physics, involving only the VN
particles in the valence CF shell, should become less impor-
tant as one goes to larger and larger systems. If one assumes
that the energy gain of pairing is roughly AN as is usual for
BCS theory, then for any finite A, the pairing energy gain
will always be larger than any putative Hund’s rule energy
gain in the thermodynamic limit.

In Ref. 13 arguments and detailed numerics were given
supporting this picture: that for large d in the thermodynamic
limit, the CF-BCS state prevails over the Hund’s rule state.
However, for very large d, with very weak coupling between
the layers, no definite numerical conclusion could be
reached. Nonetheless, whether or not one can draw conclu-
sions about very large d, it is certainly the case that the
numerics strongly suggested the existence of a CF-BCS
phase for a range of intermediate d where the Hund’s rule
physics is not present.

For simplicity, in this paper, since we are concerned
mostly with the physics at smaller d (and where an incom-
pressible quantum liquid is observed), we will not address
the Hund’s rule physics further. To avoid this complication,
we will focus on shell fillings such that Hund’s rule is com-
patible with the CF-BCS state, so no competition arises. We
refer the reader to Ref. 13 for further discussion of this issue.

B. Mixed CF-CB results

In order to obtain a complete description of the ground
state for small layer spacing d, we need to consider the
mixed fluid description of the quantum Hall bilayer. Upon
addition of CBs to the paired CF description, one obtains the
family of mixed CF-CB states [Eq. (25)]. Technically this
corresponds to adding one more variational parameter to the
previously discussed case of paired CFs. Consequently, using
this extended family of trial states yields at least as good
results as with composite fermions only.

Numerical simulations confirm that the mixed fluid de-
scription of bilayer trial wave functions [Eq. (25)] achieves
an impressively precise description of the ground state for all
d. This is borne out by the numerical results shown in Figs.
3 and 4, analogous to the above Figs. 1 and 2 except that
now we have used the mixed fluid wave functions.

In Fig. 3 we find that over the entire range of d, the
overlap with the exact ground state is extremely high for all
systems sizes. The lowest overlaps occur at roughly d
=1.5¢,. As seen in Table I these “worst case” overlaps are
comparable to the overlaps seen for the Laughlin v=1/3
state for Hilbert spaces of similar size. Writing squared over-
laps as 1 -6, we find that the & value for our worst trial wave

functions are roughly twice that of the Laughlin state for
similar Hilbert spaces of comparable dimension. Similarly, in
Fig. 4, we find that the largest relative error for the prediction
of the ground-state energy occurs at intermediate distances
close to d=1.5¢. These “worst case errors” are also listed in
Table I. We find that the energy errors for our bilayer states
are about 3—4 times as large as those of the Laughlin state at
v=1/3 for Hilbert spaces of comparable dimension. Given
that the Laughlin state is often referenced as a ‘“gold-
standard” for its accurate description of the exact ground
state, we find the level of accuracy of our trial states to be
quite satisfactory. (Note that the CF wave functions for v
=2/5 are even more accurate than the Laughlin state at v
=1/3 for comparable Hilbert-space dimension.) At layer
separations d not too close to 1.5¢,, the bilayer trial wave
functions are even more accurate than the number quoted
above and may exceed the accuracy of the Laughlin and even
of the v=2/5 trial wave function.

For further comparison, in the upper frame of Fig. 4 are
the energies (dark lines) of the mixed fluid wave functions
first introduced in Ref. 34. As discussed above, these wave
functions lack CF pairing that is included in Egs. (16) and
(25). Although these wave functions clearly capture some of
the physics of the crossover from the 111 to the CF liquid, it
is clear that pairing is required in order to have a high degree
of accuracy.

Naturally, nearly exact trial states are obtained at d —0,
where the appearance of CFs may be regarded as a perturba-

o -desgo-do g
= S ;ﬁ G —=§--1
g SR ~_~%¢ /%‘_%
- \Jfﬁ}
<
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FIG. 3. (Color online) Squared overlaps of the exact ground
state with trial state for mixed CB-CF fluid with interlayer (p,
+ipy)-wave pairing. Over the entire range of d, extremely high
overlaps are obtained. Data are shown for N=5+5, N=6+6, and
N=7+7. The quality of the overlaps is comparable to that of the
Laughlin state; see Table I.
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FIG. 4. (Color online) Comparison of relative errors in energy
for mixed CB-CF fluid with interlayer (p,+ip,)-wave paired CF
model systems with N=10 (top) and N=14 electrons (bottom). As
in Fig. 2, each curve represents a different trial state. The mixed
fluid states from Ref. 34 are highlighted in bold in the upper panel.
Over the entire range of d, extremely good trial states are obtained,
with a remaining error 8¢ <<2.2X 1073, For intermediate d, where
the states without pairing |[n Fermions) do not perform very well,
considerable improvements are realized. Monte Carlo errors are on
the order of the encircled error bar.

tion of the 111 state (which is obtained by the particular
choice of parameters g;=0 and cg=1, and which is the exact
ground state at d=0). However, the admixture of CFs be-
comes important at rather small d. We see that this admixture
provides a nearly exact description of the fluctuations around
the 111 state. However, in the regime of small layer separa-
tion, an equivalent description in terms of other excitations
to the 111 state may be also suitable.>*

It should be noted that the number of variational param-
eters required to obtain good trial states becomes maximal at
intermediate layer separations d~ 1.5¢,. However, even at
d~1.5¢,, only four variational parameters are required for
the system sizes we consider. In the limits of d=0 and d
— oo, writing the wave function in the form [Eq. (25)] essen-
tially amounts to rephrasing a parameterless trial state, re-
spectively, the 111 state and a product state of Fermi liquids,
in a different form (the case of d— is slightly more com-
plicated, as was discussed in detail in Ref. 13). As either
regime is approached, the number of variational parameters
required to describe the physics of the ground state de-
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creases. For example, at d~0.5€¢, and d~3¢{, only two
variational parameters are used.

It is at intermediate distances of €(=d=<2{, that the
mixed fluid state is most different from both the 111 state and
the CF liquid. In this regime, the influence of CF pairing is
strongest, and the CFs tend to occupy orbitals in CF shells
higher than the Fermi momentum of a filled CF Fermi sea (as
shown in Sec. III C, below). Although the overlap of our trial
states has a minimum seen at d= 1.5€,,, which occurs in the
regime that we identify as a paired state, we would like to
point out that the magnitude of this overlap remains very
high. In fact, the overlap is larger than that found for paired
states in the single layer, i.e., for the Moore-Read state,32 or
its generalizations for trial states in the weak-pairing phase at
v=>5/2, which is accepted to describe the physics of the
quantum Hall state at that filling factor. Similarly, we con-
clude that CF pairing captures the essential physics of the
quantum Hall bilayer system at filling factor »=1 for inter-
mediate layer separations d.

As a side note, we have confirmed numerically that the
mixed fluid trial states from Ref. 34 may be obtained in a
manner prescribed in the approach to the filled shell cases.
The general phenomenology that may be obtained from the
analysis of filled CF shell states is discussed in Appendix B.

C. Occupation probabilities of CF shells

With the mixed fluid wave functions [Eq. (25)], a vast
family of trial states is available. Furthermore, the above
results confirm that the mixed fluid wave functions allow for
an accurate description of ground-state properties. As a step
toward an understanding of the numerical results just pre-
sented, it is interesting to characterize the most successful
trial states via the probability for an electron to occupy a
given CF-LL within such a state.

In Figs. 1-4, the various trial states were shown without
specifying the explicit values of the variational parameters
{g,}.7® Indeed, giving the precise values of these parameters
may likely not have been very meaningful to the reader for
two reasons. First, these parameters are defined only up to an
overall global normalization. Second, and more importantly,
the normalization of the individual composite fermion orbit-
als that the wave function is composed of is not well defined.
If a basis of normalized single particle orbital is projected to
the LLL using Eq. (7), we obtain a basis of many-body com-
posite fermion orbitals that are no longer orthogonal, and
which have lost their original normalization. In particular,

the projected orbitals ¢;=;(z;, ...,zy) become functions of

all particles’ coordinates. Their normalization N could be
defined by integrating out all coordinates but one. However,

in such a definition, the normalization N of a single orbital
becomes ill defined, as it also depends on the correlations in
the system, which, however, are only known after a complete
many-body state has been specified.

Since the normalization of the orbitals we use is ill
defined,”” we propose a universally applicable definition of

the occupation p(k) of a CF orbital ¢, with momentum & to
be given by

125106-11



MOLLER, SIMON, AND REZAYI

1 9 log{W({g)| ¥ ({gi})
2N 9 log g

pk)= ; (32)
where W({g,}) is the bilayer wave function which is a func-
tion of the variational parameters g;, and (-) denotes the un-
normalized Monte Carlo average. Relation (32) was success-
fully deployed for pairing in a single layer by two of the
current authors,> and may be explained with the example of
a simple one-particle two-state model with wave function
V=g,¢,+g,d,, which we allow to be unnormalized. Ex-
panding the square of this wave function,

<\I’|‘I’>= 2 g?gj<¢i|¢j>’ (33)

ij=12

we can see that Eq. (32) yields the proper occupation prob-
abilities of both levels, provided that the overlap integral
(¢;| ¢,) vanishes. This is the case for the scalar product of
wave functions in a regular orthogonal basis. This argument
generalizes to the many-body case simply by applying the
product rule for the derivative.

For the mixed bilayer states, however, we use the nonor-
thogonal basis of the LLL-projected CF orbitals. Nonethe-
less, we could verify that the occupation probabilities for
states with filled CF shells [where we know the occupation
probabilities (see Appendix B)] are obtained from Eq. (32)
with very high accuracy, showing that the respective overlap
integrals are small, thus giving a physical meaning to these
occupation probabilities.

Surprisingly, applying Eq. (32) to the variational param-
eter for composite bosons cg does not yield the proper value
for the occupation probability of the CB orbital. Conse-
quently, we exploit the fact that this probability is comple-
mentary to the total occupation probability of the various CF
orbitals. This allows to calculate the occupation probability
of the CBs pg as

pp=1-2>pn), (34)

where p(n) is the probability to find an electron in CF shell
n.

Let us now turn to the results obtained for the two se-
lected systems sizes that we discussed in the previous sec-
tions. Taking the best trial state as a reference at each d, we
may extract from our calculation the approximate separation
dependence of the occupation probability p(n). The resulting
data are displayed in Fig. 5.

We discuss these results going from right to left on the
axis of layer separations. Upon looking at large layer sepa-
rations, it is first noticed that the distribution at d=3¢ is that
of the CF Fermi sea. For example, in the lower panel for N
=7+7 electrons, the probability that an electron is in the
lowest CF shell is p(0)=2/7=0.28. For the next higher
shell, which is fourfold degenerate, one finds p(1)=4/7
~(.57. The third shell accounts for the remaining probabil-
ity. Upon going to intermediate layer separation, one notices
the onset of pairing as one would expect by analogy with
BCS theory: electrons are lifted above those orbitals within
the equivalent of a Fermi sea and occupy states at higher
momentum instead. Correspondingly, the occupations in the
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FIG. 5. (Color online) Probabilities for a single electron to oc-
cupy a given orbital, as obtained from Eq. (32). A region of strong
pairing, i.e., large probabilities to find an electron in an excited
orbital above the would be Fermi momentum, is found between d
~0.8...1.5¢,. Note that the probability pg that an electron forms a
CB [obtained as pg=1-2p(n)] practically drops to zero, or slightly
below, at d~ €. The kinks in the dependence of pg(d) are close to
values which are related to the CF shell structure.

lowest two shells drop to allow the occupation of the higher
ones (n=3 included, which is occupied by a single electron
per layer, initially). For N=5+5, we follow an analogous
trend of redistribution among the occupation of CF levels,
noting that the total probability of finding a particle in one of
the excited orbitals is quite large, with absolute values close
to 25%. Only at lower layer separation does the occupation
of the CB orbital become important. Conversely, the occupa-
tion of CF orbitals plays an important role down to very low
layer separations.

Now, the occupation of the CB orbital pg shall be ana-
lyzed. At large layer separation, the value obtained from Eq.
(34) drops slightly below zero. This is an inconsistency re-
lated to the empirical character of Eq. (32). However, the
error is not very large, amounting to about 1%, which gives
some confidence into our method, though it reminds us that it
is approximate. We need to remark also that the data are
based on calculations for a restricted number of trial states,
such that more substantial deviations are likely due to data
that correspond to not quite optimal trial states. The rough-
ness of the curves illustrates this. Some of the features in the
behavior of pg(d) might also be caused by filled shell (i.e.,
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finite size) effects, given that kinks are featured at values
close to 1-ng/N where ng CFs yield a filled shell configura-
tion.

D. Order parameters

This section is devoted to discussing another means of
characterizing the mixed fluid trial states—we discuss the
broken symmetries of our wave functions and their associ-
ated order parameters. In the present case of the bilayer sys-
tem with paired CF, two distinct symmetries will be dis-
cussed in Secs. III D 1 and III D 2. In addition, we consider
an additional topological order parameter of the paired CF
system in Sec. III D 3.

1. Excitonic superfluid order

In order to consider the first of the two potential symme-
tries of our quantum states, it is useful to employ the pseu-
dospin picture. A density-balanced bilayer system has been
described as a pseudospin field with its values confined to
the x-y plane.” In the ground state the orientation of this
pseudospin field is homogeneous and (in the absence of in-
terlayer tunneling) a spontaneous breaking of the U(1) sym-
metry for rotations of the pseudospin around the z axis oc-
curs such as to select a preferred direction in the x-y plane.
The operator for the in-plane pseudospin thus yields a mea-
sure for detecting the symmetry of a coherent state in the
bilayer system. In second quantized notation, this order pa-
rameter describes a flip of the pseudospin at position r, noted
as F(r):

Flr)= \If;(r)\lfl(r). (35)

For the purpose of numerics at fixed particle number N; per
layer, the operator needs to be modified such as to conserve
N,. This is realized by taking the product F(r)F'(r’) at two
distant points r and r’ which now preserves the number of
particles in each layer. In the limit [r—r’| — %, one expects to
recover the square of the expectation value of F in a corre-
sponding grand canonical ensemble. Thus we define

S= lim Fr)F(r). (36)

[r—r'|—0

For a finite-sized system, we must be content to move the
positions 7 and 7' as far apart as possible. One can visualize
the action of this operator either as the associated pseudospin
flips of two electrons in opposite layers at distant positions or
as the exchange of the real-space positions of these two par-
ticles. This operator can be easily calculated in our Monte
Carlo simulations carrying out this kind of exchange in po-
sition for pairs of electrons and monitoring the effect on the
wave function.

For the 111 state, we have (111|S|111)=-1. Conversely,
(CFL|S|CFL) yields a very small value provided that the
distance |r—r’'| is chosen to be sufficiently large. Any finite
geometry imposes a constraint on the limit in Eq. (36), but
numerics confirm that (CFL|S|CFL)=~0 to within roughly a
part in 1073 for accessible system sizes. As the sign of (S)
does not matter to distinguish the 111 and paired CF phases,
we will refer to its absolute value
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FIG. 6. (Color online) A plot of the excitonic superfluid order
parameter S(d) for different system sizes according to the legend
(symbols with error bars) and the fraction of bosons py as obtained
from Eq. (32) (dashed lines). Data of system sizes N=8+8 and N
=12+12 are based on a set of MC calculations with energy optimi-
zation (see Appendix C) and we have no according exact calcula-
tions available for comparison.

§=[S)] (37)

as the excitonic superfluid order parameter. Upon calculating
S for mixed fluid states with filled CF shells, we find that
there is a monotonic relation between the order parameter S
and the fraction of electrons Ny/N that have undergone a
CB-like flux attachment (see Appendix B). Furthermore, re-
sults for several different system sizes collapse on a single
curve, such that we may estimate finite-size effects to be
small. We conclude that S is indeed a suitable order param-
eter for the transition between the CFL and the 111 state.

While it is true that increasing the fraction of CBs yields
a larger order parameter, this is not the only factor influenc-
ing S. In particular, for our finite-sized systems, nonzero val-
ues of the order parameter can be obtained for bilayer states
within the paired CF picture, i.e., without composite bosons.
Let us discuss this feature in detail by examining S calcu-
lated in our Monte Carlo simulations for each of our trial
states. We attribute the value obtained for the best trial state
at a given d to represent the value S in the ground state at
that d to a very good approximation. The data in Fig. 6 were
obtained following this procedure. Error bars are established
by taking into account the values of S for trial states, whose
energies are within the range of Monte Carlo errors from the
best trial state.

A nonzero excitonic superfluid order parameter (i.e., S)
for pure paired-CF states means that good trial states without
adding composite bosons can be found above some layer
separation d“® which is well below the value d,., where S
becomes nonzero. While it is not easy to determine exactly
the layer separation where mixed CB-CF fluid states become
substantially better than the pure paired-CF states, it is more
straightforward to estimate the paired CF states’ maximal
possible order parameter

CF—BCS|S|\P{CF—BCS , (3 8)

Smax = Max |<q’{8k} st
{ext

where the maximization is over only paired CF states with-
out any CBs. The fact that S can be nonzero without CBs is
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itself an intriguing phenomenon. For instance, considering
N=5+>5 electrons, p-wave paired CF states yield a maximum
Simax as large as 42% the value of the CB condensate (the 111
state). Values for other system sizes are given in Table II
The numbers indicated for S, should be understood as es-
timates of a lower limit of this value. They were obtained by
optimizing CF states for successively lower layer separa-
tions, until S ceased to increase.

These data, together with the values of discussed in
Sec. III A, shed some light on the question of whether the
paired CF state still has the symmetry of the 111 state in the
thermodynamic limit. Given that the maximal value of the
111 order parameter decreases quickly with N as summarized
in Table 1II, it seems that a nonzero § for paired CF states is
a vestige of finite-size systems. Roughly extrapolating 4B in
the same manner confirms this assumption, as it yields a
value in the neighborhood of the onset of the excitonic su-
perfluid order-parameter. Presumably, the order parameter
should thus vanish in the thermodynamic limit for any state
not involving composite bosons. On a more abstract level,
one may reason that interlayer coherence is required for this
order parameter to be nonzero. It seems unlikely that in the
thermodynamic limit interlayer CF pairing alone would
achieve this.

With these caveats, our theory supports a second-order
transition between the excitonic superfluid (111 phase) and
the paired CF state, as can be argued from the smooth varia-
tion of the order parameter. Furthermore, for all system sizes
that we examined, we find approximately the same behavior
of S(d), which approaches zero at approximately d=1.5€,,.
Again, we interpret the smooth tail of S(d) found above this
value of the layer separation as finite-size effects and pre-
sume that the order parameter should approach zero at a
precise value d, in the thermodynamic limit.

In a recent DMRG-based numerical study,30 it was shown
that the character of the low-lying excited states changes at
around d=1.2¢, for a finite system with N=24. In light of
our results, this transition might correspond to the layer sepa-
ration which separates states where CBs do or do not play a
role. Note that the value predicted from extrapolation of our
results is d“B(N=24) = 1.3¢,,.

dCB

2. CF pairing order

Assuming that the paired CF phase is distinct from the
excitonic superfluid phase according to the above hypoth-
eses, there should be a second-order parameter that is par-
ticular to the paired CF phase. In analogy with BCS theory,
one would expect an order parameter of the form
(W(r)¥(r)). However, here we consider pairing of com-
posite fermions. The important difference is the Jastrow fac-
tors attached to the electrons contribute additional phase fac-
tors. Consequently, a guess for the order parameter proceeds
by unwrapping these phases to give

exp{— i arg[H (2= Zk)z]}
Xexp{— i arg[Hk (w- wk)z]}\I’T(z)\I’l(w), (39)

where z and w encode the position r in the upper and lower
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layers, respectively. However, pairing is in the p-wave chan-
nel and the order parameter is expected to have a phase that
forces it to be zero at coinciding points z=w. A nonzero
value might be obtained upon examining operators that are
nondiagonal, i.e., z# w. Though, in such cases the order pa-
rameter continues to have a phase that makes numerical cal-
culations difficult: averaging a vector rotating arbitrarily in
the plane for different configurations gives a vanishing re-
sult. One must guess the proper phase of the order parameter.
For example, exp[i arg(z—w)] would be appropriate for the
p-wave case. Thus, we obtain

p(z.w) = eXp{— i arg[l_[ (z- Zk)2:|}
k
Xexp{— i arg[H (w- wk)z]}
k

Xexp[—i arg(z —w) ¥, ()W (w). (40)

However, Eq. (40) still needs to be modified as numerics
require an order parameter that conserves the particle number
in each layer. In principle, one can multiply Eq. (40) by its
Hermitian conjugate invoking different positions p(z",w’)
to obtain a candidate for an order parameter satisfying this
requirement

P=p(z,w)p' (2", w). (41)

This is a rather complicated operator since it is a function of
the four positions z, w, z’, and w'. On the sphere, an addi-
tional difficulty arises as a magnetic monopole charge in the
center of the sphere implies the presence of a Dirac string,
i.e., a singular point where a flux tube penetrates the surface
of the sphere in order to achieve magnetic flux conservation.
This results in Aharonov-Bohm phases for wrapping around
this point, which must be taken into account to define P
properly.

We have not yet succeeded to show that a suitably modi-
fied BCS order parameter has a nonzero expectation value
for the paired CF states. However, given the nature of our
construction of the wave function based on BCS theory, it
seems likely that such an order parameter exists. We hope
that in future work we will be able to demonstrate its exis-
tence explicitly.

3. Pairing topology

The distinction between the excitonic superfluid phase
and the paired CF phase should become very obvious on the
torus (or periodic boundary condition) geometry where the
chiral p-wave paired phase has a fourfold topological ground
state degeneracy!!”® whereas the 111 phase has a unique
ground state, at least in the thermodynamic limit. One would
expect that as d is decreased through the phase transition, the
fourfold degeneracy should split, leaving a unique ground
state at small d.

In Fig. 7 we show several energy spectra of exact
diagonalizations® on the bilayer torus for different shaped
unit cells and different (even) number of electrons. These
data certainly suggest that the lowest four states are sepa-
rated from the higher energy states by a clear gap, and at
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FIG. 7. (Color online) We display the spectrum of the Coulomb
Hamiltonian on the bilayer torus for different system sizes and ge-
ometries as a function of the layer separation d. The left-hand view
shows N=6+6 particles on a torus with hexagonal unit cell, and the
right-hand view shows N=7+7 particles in the hexagonal (top) and
square (bottom) unit cells. The location in the Brillouin zone of the
lowest four energy eigenstates is shown in the respective insets. The
data are suggestive of an approximate fourfold degeneracy of these
four lowest-lying states for intermediate d. Strong finite-size effects
are concluded from the marked difference of the spectra in the
hexagonal and square unit cells for N=14 particles, which precludes
strong conclusions about the thermodynamic limit.

large enough d, these states become degenerate. Although
suggestive, these data should be viewed with some caution.
What one would like to see numerically is that at any d
larger than a critical value, the four lowest energy states
should become increasingly degenerate as the system be-
comes larger. However, this convergence (if present) is not
easily seen numerically because of discrete shell filling ef-
fects. For example, in the case of the hexagonal lattice for
N=14, at d=2 the Fermi liquid state is already fourfold de-
generate. Thus, for this system size and geometry, observa-
tion of a fourfold degeneracy should not be taken necessarily
as evidence of pairing. Nonetheless, these data are suggestive
that a phase exists with the topological order that is charac-
teristic of pairing, i.e., having a fourfold ground-state degen-
eracy.

IV. DISCUSSION

Perhaps the most crucial question to be answered is the
phase diagram at zero temperature with respect to variations
in the layer spacing d. We know for certain that the 111 state
is the ground state at very small d and that two noninteract-
ing composite fermion Fermi liquids are the ground state for
infinite d. We believe our work sheds substantial light on the
intermediate values of d.

Our work (and also that previously presented in Ref. 13)
supports the notion that at large but finite values of d the
system is in a (p,+ip,)-wave paired state of composite fer-
mions. It has been suggested in Refs. 3 and 12 that even for
infinitely weak coupling between the layers there should be
an instability to a paired phase. From our numerical work it
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is certainly not possible to determine if the transition to a
paired phase occurs at finite or infinite d. However, it appears
true in our work that the paired trial wave function is a no-
tably better ground state than the unpaired wave function
even at reasonably large values of d=2. Since this appears
true even when the interlayer interaction is weak, and since
this phase appears adiabatically connected to the Fermi lig-
uid, we should conclude that this is a weak-pairing phase,
rather than a strong pairing phase.’® This conclusion is sup-
ported by the fact that, at least at d> 1, the occupancy of the
orbitals with small (angular) momentum (i.e., the inner
shells) is higher than the occupancy of orbitals with higher
momentum (the outer shells)—this behavior is characteristic
of a weak-pairing phase.’® Finally, the conclusion of a weak
pairing phase is supported by the topological degeneracies
observed on the torus discussed in Sec. III D 3 above.

At smaller distances between the layers, as discussed
above, we found clear evidence of the order parameter [a
broken U(1) symmetry] associated with the 111 or excitonic
superfluid phase. We analyzed this order parameter and
found that it approaches zero smoothly at values close to d
=1.5¢, with a tail at larger d attributed to finite-size effects.
This smooth behavior suggests a second-order transition into
the excitonic superfluid phase. Interestingly, we found that
the order parameter can be nonzero even for our paired p,
+ip, CF-wave functions (with no additional CBs added to
the wave function). Our current belief is that this is a finite-
size effect, and in the thermodynamic limit, this order param-
eter would become nonzero only when the wave function has
a nonzero density of composite bosons. At small layer spac-
ings where there is a finite value to the excitonic superfluid
order parameter, we find that our wave functions with mixed
CB-CF and with pairing of the CFs provide exceedingly
good trial states. It is an interesting question, which we have
not been able to fully answer, whether there is a distinct
(pairing) order parameter associated with the CF pairing in
the presence of the condensed CBs.

There are a number of further issues which may be cru-
cially relevant to experiment which we have not yet men-
tioned at all and we will now address briefly.

(i) Finite temperature and low energy excitations: Our
trial wave function approach is not particularly well suited to
studies at finite temperature. Nonetheless, one could attempt
to find trial wave functions for the low-lying excited states
which would then be thermally occupied at low but finite 7.
Certainly, the excitonic superfluid (111) phase as well as the
p.+ip, paired CF phase would have low energy Goldstone
modes associated with superfluid counterflow (this is essen-
tially a necessary result of having quantized Hall drag).
Other excitations of these phases should be gapped and
would be less important at low 7. At some higher character-
istic temperature, the order parameters would be destroyed
altogether. It is very possible that the characteristic tempera-
ture for the paired CF phase would be extremely low, par-
ticularly when the spacing between the layers is large. Like a
superconductor, above this temperature, the putative paired
CF system would behave like a CF-Fermi liquid with some
additional (weak) correlations between the layers. Of course
since this is a two-dimensional system, vortex unbinding
physics will be important and strictly speaking there is no
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long-range order above zero temperature, and the transition
from super to normal would be smeared to a crossover.

The picture of a mixed CF-CB fluid at small layer spacing
discussed in this paper adds a number of possibilities to the
finite 7 phase diagram. For example, one might imagine hav-
ing a mixture of CFs and CBs where one or the other species
is condensed (but not both). The case where the CFs are not
condensed but the CBs are condensed corresponds with the
picture from Ref. 34 of a mixed CF-CB fluid where the CFs
fill a Fermi sea, but do not pair (see Appendix B). Such a
phase could have low energy excitations associated with ex-
citations of the fermions around the Fermi surface. We note
however that the phase remains incompressible with respect
to “symmetric” density perturbations that change the total
local charge in both layers.>* To understand this incompress-
ibility we simply note that when the total density com-
presses, the bosons would then feel an effective (Chern-
Simons) magnetic field [see Eq. (28)], which they can only
accommodate by forming vortices—a gapped excitation. An-
other way to realize this is to note that motion of density the
entire system (both layers) remains subject to Kohn’s theo-
rem and must only have an excitation at the cyclotron mode
in the long wavelength limit.

Conversely, if one considers a density gain in one layer
and a compensating density loss in the opposite layer, the
bosons would feel no net field. Although such a density
change would presumably pay the price of the capacitive
energy between the two layers, at long wavelengths such a
mode may still be low energy. Indeed, the superfluid Gold-
stone mode is of this form.

One might further ask whether there might be any novel
low energy modes in the mixed CF-CB phase associated
with motion of CFs in one direction and CBs in the opposite
direction so as to preserve overall uniformity of charge. For
example, we may consider the case where a current of CFs
occurs in the same direction in both layers, such that pT
= pl and pL: p%; and the total density in each layer p]g+ pi
= p£+p1£ is a constant. In this case, there is no capacitive
energy, and examining Egs. (27) and (28) we see that there is
no net field seen by the bosons, and there is no net field seen
by the fermions. While naively it would appear that such a
motion would yield very low energy modes, it is also pos-
sible that the pairing interaction would couple the motion of
the bosons and the fermions, gapping such a mode even if
the fermions are uncondensed.

(ii) Layer imbalance: In principle our theory can be gen-
eralized to situations where there are unequal densities in the
two layers. It is well known that the 111 wave function can
easily accommodate layer imbalance.®® In the paired-CF
phase, on the other hand, this type of perturbation (like a
Zeeman field in a traditional superconductor) is clearly pair
breaking since the | and | Fermi surfaces would be of dif-
ferent sizes (Although in principle more exotic types of pair-
ing could be constructed to accommodate such differences.)
A much more interesting question to ask is what happens in
the regime where there are both CFs and CBs. The interme-
diate wave functions discussed in this paper [Eq. (25)] do not
appear to generalize obviously to cases where there are un-
equal numbers of particles in the two layers (as this would
result in a determinant of a nonsquare matrix). We recall that
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in Ref. 34, mixed CF-CB wave functions were constructed
which are identical to those discussed here (with no CF pair-
ing), where the antisymmetrization over all particles was
done explicitly. There is no particular difficulty in generaliz-
ing that form to cases with layer imbalance, although such
explicit antisymmetrization is difficult to handle numerically
except in very small systems. Nonetheless, we can at least in
principle consider such generalizations as trial wave func-
tions, and we can further consider allowing pairing of the
CFs. Because of the pairing interaction, one might guess that
the CFs would be stabilized by having equal numbers of CFs
in both layers (as discussed above), and that the density dif-
ference would be accommodated by moving CBs between
the layers. The fact that experimentally layer imbalance ap-
pears to stabilize the excitonic superfluid phase®” suggests
further that the transition to this phase coincides with the
appearance of CBs.

(iii) Spin: In the experiments of Ref. 61 it has been sug-
gested, that at least in certain samples, the system becomes
spin polarized at low d but is partially polarized at larger d.
The transition is thought to occur near the phase transition to
the excitonic phase. Although all of the trial wave functions
discussed here have been for fully polarized systems, they
can certainly be generalized to nontrivial spin configurations.
(One should not confuse the actual spin with the isospin, or
layer index.) For example, one could trivially consider hav-
ing a Fermi sea with some spin down and some spin up CFs.
Once one considers pairing of this (partially polarized) Fermi
sea, there become many different possibilities,”® some analo-
gous to superfluid Helium 3. Other exotic possibilities could
also occur. For example, one might imagine two Fermi seas,
each pairing in the a p-wave channel, or one could have
unpolarized pairing in an s-wave channel. However, these
exotic possibilities may not be experimentally relevant since
the “superfluid” phase appears to be polarized,®' suggesting
that, as the spacing between layers is reduced, an unpolarized
Fermi sea condenses into a polarized state (possibly as a
first-order transition).

(iv) Tunneling: The wave functions we have constructed
here are not only antisymmetric between electrons within a
single layer, but are also antisymmetric between electrons in
opposite layers. As such these wave functions are not par-
ticularly destabilized (or frustrated) by small amounts of in-
terlayer tunneling that destroys the layer index as a good
quantum number. One should expect, however, that tunnel-
ing between the two layers is quite suppressed for the CFs
since the CF has to carry its Jastrow factor with it, thereby
requiring relaxation of all of the surrounding particles. In
other words, for a CF to tunnel, the entire correlation-hole
complex needs to tunnel with it. [In yet another language, the
effective magnetic fields in Eq. (27) are changed when a CF
moves from one layer to another.] In contrast, tunneling of
CBs is expected to be quite large, since the CB has an iden-
tical correlation hole in each layer. Indeed, once the CBs are
at finite density, we have found that there is a nonzero ex-
pectation of the excitonic superfluid (111) order parameter
which means essentially that it is uncertain which layer any
CB is actually in and the zero bias tunneling is resonantly
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enhanced. With this consideration, we might expect that tun-
neling between the two layers will stabilize the CBs and
destabilize the CFs. When there are CBs present, tunneling
between the layers will also have the effect of gapping the
Goldstone mode, since a particular phase relation is preferred
between the two layers.

(v) Transport: Several marked transport phenomena are
observed in the bilayer systems.'323 As discussed above,
resonantly enhanced interlayer tunneling current is a signa-
ture of the excitonic superfluid (or 111) order parameter. In
essence, a nonzero value of this order parameter indicates
that in the ground state, each electron is superposed between
two layers and therefore tunneling occurs very strongly, con-
trolled by the relative phase between the two layers, analo-
gous to the Josephson effect.

The other two dramatic transport observations are quan-
tized Hall drag pﬁ,:h/ e? and superfluid counterflow (which
are very closely related to each other). In the interlayer-
exciton superfluid (or 111) phase, both phenomena can be
understood by the presence of composite bosons. One argues
that superfluid counterflow derives from coherent transport
of CBs or charge-neutral interlayer excitons. As these objects
have no charge, they also do not couple to the magnetic field
and generate no Hall voltage.*

The above reasoning is based on considerations regarding
the CB condensate. Although our results show that the
“pure” CB condensate or 111 state occurs only at layer spac-
ing d=0, we expect the transport features of this phase to
remain qualitatively similar to those of the pure 111 state for
any sufficiently small d where the excitonic order parameter
(111) remains nonzero.>*

Crucially, we note that the two phenomena of quantized
Hall drag and superfluid counterflow would also be observed
in a p,+ip, paired CF phase, identical to that of the 111
phase—although such a CF superconductor would be lacking
the strong interlayer tunneling as discussed above. [The fact
that such a p-wave superconductor shows quantized Hall
drag and superfluid counterflow is easily derived using the
technique of Ref. 58 (see also Ref. 11) to handle
(py+ipy)-wave superconductivity, along with a Chern-
Simons transformation to account for the fact that we are
pairing composite fermions].

It might be interesting to study the Hall drag at interlayer
separations just above the onset of interlayer tunneling. If
experiments were to identify an intervening regime, which
has quantized Hall drag, but no resonant tunneling, this
would be an indicator of the p,+ip, paired CF phase. Pre-
sumably one would want to examine this transition in high
Zeeman field where no spin transition would complicate ex-
periments. One should be cautioned, however, that our analy-
sis of transport is very crude. A more accurate analysis would
necessarily involve understanding the effects of disorder as
well as possible edge mode transport, which has been com-
pletely neglected in this work.

V. CONCLUSION

In conclusion, we have derived a composite particle de-
scription for the ground-state wave function of the quantum
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Hall bilayer system at filling factor v:%+%. This ground
state is properly described by interlayer p-wave pairing of
composite fermions above a layer separation d“B. More pre-
cisely, this pairing instability occurs in the positive p-wave
or p,+ip, channel. Below d“B, a mixed fluid phase with
coexistence of composite bosons and composite fermions de-
velops, and CBs successively replace paired CFs upon di-
minishing d. We should emphasize that positive p-wave pair-
ing is the only pairing channel that is consistent with such a
coexistence.

The precision of the composite particle description has the
same order of magnitude as other important trial states in the
literature of the quantum Hall effect, notably as the Laughlin
state at v:%. The agreement between the trial states and the
exact ground state was checked using energies, overlaps and
correlation functions, and was found to be in good agree-
ment.

We analyzed the order parameter of the broken U(1) sym-
metry of the excitonic superfluid (the 111-state order param-
eter), and found it to approach zero smoothly at values close
to d=1.5¢ with a tail attributed to finite-size effects. We also
found this order parameter to be nonzero for the pure
paired-CF phase. Though we cannot exclude the contrary
with absolute certainty, we believe that this is a phenomenon
occurring only in finite-size systems. From the shape of the
order parameter, we conclude that the phase transition be-
tween the 111-excitonic-superfluid phase and the paired CF
phase is of second order. The precise value of the layer sepa-
ration where this transition occurs cannot be inferred from
our numerics, since the order parameter continues to be non-
zero at all layer separations in small systems. The transition
from the p-wave paired CF phase to an excitonic superfluid
phase might also be roughly identified by the splitting of a
fourfold degeneracy on the torus, indicative of the paired CF
phase—although our finite-size torus data need to be viewed
with some caution.
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APPENDIX A: PAIRED CF WAVE FUNCTIONS
ON THE SPHERE

The geometry chosen for our numerical calculations is the
sphere, which has the benefit of avoiding boundary effects
for finite-size systems. For our purposes, the most suitable
coordinates are the spinor coordinates

u=cos(0/2)e”?? and v =sin(6/2)e'??. (A1)

In the following, it is convenient to change notations such as
to write particle coordinates with two indices: the upper in-
dex indicates the pseudospin and designates the layer to

125106-17



MOLLER, SIMON, AND REZAYI

which it belongs, whereas the lower index indicates the par-
ticle number. Thus, (u;,v])={)7 describes the location of
particle i with pseudospin o. The external magnetic field is
represented by a magnetic monopole of strength N, in the
center of the sphere, and it is useful to work in the Haldane
gauge.”® In particular, using the formalism of the stereo-
graphic projection between the plane and the sphere,%? one
then obtains wave functions on the sphere which can be ex-
pressed entirely in terms of u’s and v’s and contain no addi-
tional phase factors. Our purposes require the translation of
Jastrow factors to the new spinor coordinates on the sphere.
A coordinate z translates to pseudospin up (1) and a coordi-
nate w translates to pseudospin down (]), e.g.,

(z:—wp) — (Q = Q) ~ (u)v} —ujv)). (A2)

Furthermore, the knowledge of a complete set of eigenstates
¢; is required to describe Eq. (16) on the sphere. These
eigenstates are given by the monopole harmonics®-%° written
as Y, ;,, for a total flux Ny=2¢g, and the angular momentum
quantum numbers [=|g|+n and |m|=<I. These orbitals are
organized in a shell structure related to the Landau levels on
the plane. The LL index takes integer values n=0,1,2, etc.
Contrarily to the plane, the degeneracy d,, of these “Landau
levels” is not constant but increasing with n as

d,=2(|qg| +n) + 1. (A3)

In the thermodynamic limit, g — %, whereas n remains finite,
such that the constant LL degeneracy of the plane is recov-
ered.

The proper pair correlation function on the sphere might
be deduced entirely from the requirements of its antisymme-
try and the condition imposed on the flux count for the re-
sulting bilayer wave function (15) to be commensurable with
the 111 state. Nonetheless, let us discuss the symmetry of
this two-point function (before projection to the LLL) in
more general terms. A general pair wave function on the
sphere may be expanded in terms of monopole harmonics,
such that

g(Q,0) =¢(Q] -0}

= E E gn,mYI/Z,(1/2)+n,m(QlT) Y1/2,(1/2)+n,—m(le‘) .

n m

(A4)

Here, the pair (k,-k) has been replaced by its analog on the
sphere [(n,m),(n,—m)]. Rotational invariance of Eq. (A4)
imposes that g, ,=g, independent of m. In the case of
p-wave pairing, we must deal with a slightly more compli-
cated case, since the pair correlation function is then not
rotationally invariant, but rather acquires a phase. This is
reflected by a less restrictive condition |g,, ,|=g,. The angu-
lar behavior of Eq. (A4) may then be analyzed according to
Eq. (25) from Ref. 65. This equation expresses the sum over
the angular momentum quantum number m of a product of
two monopole harmonics in terms of an amplitude depend-
ing solely upon their distance on the sphere and a phase
depending on several angles. For our purposes, we need to
set g=¢q’, and then take into account the relationship for the
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N(0,0)

R/ (9/’ gZ)/)
RB.0) 2

FIG. 8. Definition of the different angles for Eq. (A5) taken
from Ref. 65, adapted to our notations. Points R and R’ indicate the
positions of two electrons, and a third reference point can be chosen
as the north pole N of the sphere. Generally, the reference point is
given by the singular point of the section for a given representation
of the monopole harmonics (Ref. 64).

complex conjugation of the monopole harmonics [Eq. 1 in
Ref. 65] in order to deduce the relationship

E (_ l)q+qu,l,m(0, > ¢,)Yq,l,—m(0’ ¢)

|21+ 1 ; N
= ?Yq,,,q(ﬁlz,o)e’““‘f’)e‘W(”‘V*”). (A5)

This equation holds independently for each shell n. The
angles ¢, @', v, and Y occurring in this expression are
named according to our own conventions and indicated in
Fig. 8. The third point of this triangle is a reference point,
which is given by the singular point of the section on which
the monopole harmonics are defined. The phase d¢, accumu-
lated when taking the two particles around each other with a
small angular separation, may be deduced from the last term
in Eq. (A5). For a half rotation (i.e., changing the position of
both particles), both y and ' vary by 7, but with different
signs, whereas ¢ and ¢’ merely change roles. We then have
Sp=2mq. Thus, pair wave functions expanded in monopole
harmonics Y, ;,, correspond to 2g-wave pairing, following
the analogy with Eq. (17). The choice of q=% for the mixed
fluid bilayer wave functions is consistent with the phase of
the pair wave function found in the 111 state. Analogously,
this may also be concluded from the flux-count argument
introduced at the end of Sec. Il D: naturally, an orbital Y, ,,
adds a number N(/,:Zq flux to this count. Thus, with g= %, we
recover the previous result that a mixed CF-CB fluid requires
positive p-wave pairing of composite fermions.

To summarize, we have outlined how to write the mixed
fluid wave function with paired CF on the sphere. Taking
into account the above considerations, the explicit expression
upon adding the projection to the LLL* is
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TABLE III. Occupations p(n) calculated according to Eq. (32) for filled shell states. At a given system size N;=N/2, values for sample
calculations of all possible filled shell states are indicated. The deviations of p(n) from the expected occupation probabilities Jp,
={p(n)/[Ng(n)/N;]}—1 are indicated in percent. The last column gives the percent deviation from 1 for the sum of occupation probabilities

of the state with the maximal number of filled shells.

1 filled shell 2 filled shells

3 filled shells

Ny p0) po p(0) po p(1) p1 p(0) po p(1) P p(2) opy  dZp]
5 0.400974 +0.24 0.400877 +0.22 0.604851 +0.81 N/A +0.57
6 0.334152  +0.25 0.334157 +0.25 0.678183 +1.73 N/A +1.23
7 0.286419 +0.25 0.286421 +0.25 0.581292 +1.73 0.285971 +0.09 0.575032 +0.63 0.142858 *0.0 +0.94
8 0.250619 +0.25 0.250620 +0.25 0.508638 +1.73 0.250559 +0.22 0.500022 *=0.0 0.258746 +3.5 +0.93
12 0.167082 +0.25 0.167082 +0.25 0.339134 +1.74 0.167082 +0.25 0.339158 +1.75 0.522862 +4.57 +2091
CF_CB g - |2 Fermions) for large g,, and g,=0, Vn=1, we have cal-
T ({g,}) = det L 17 +J5T j > (- g, culated the overlap of that state with a special case of our
Uivj = Uju; n,m trial states (with g, large and all other g,=0), and find it

X Y1/2,(1/2)+n,m(QzT)Yl/2,(l/2)+n,—m(QJl') .

(A6)

As a reminder, arguments (£}) denote the coordinates par-
ticle i with pseudospin o. Jastrow factors must be expressed
following the replacement rule (A2).

APPENDIX B: NUMERICAL RESULTS FOR MIXED
CF-CB STATES WITH FILLED CF SHELLS

The analysis of the mixed fluid bilayer states with CF
pairing presented in Sec. III has shown that, in general, the
ground state features nontrivial CF pairing. However, the
precise shape of the pairing potential must be found by op-
timization over a small set of variational parameters. Since
this requires a considerable numerical effort, it is interesting
to analyze a particular subclass of the mixed fluid states:
those with filled CF shells. Using the term “shells,” we refer
to the spherical geometry as discussed in Appendix A. These
filled shell states are obtained following the choice of param-
eters (26) for the g,, i.e., choosing very large coefficients up
to a reduced Fermi momentum (k) to force the respective
number of electrons into CF orbitals. Remaining electrons
then occupy CB states.

Given the degeneracy of CF shells on sphere (A3), with
q=% for the mixed fluid states, there are a small number of
possible filled shell states for each system size N. Explicitly,
the series of possible CF numbers per layer for n; filled CF
shells is given by

Nip(n) =n,(n,+1)=2,6,12,20, ... . (B1)

Though these filled shell states are known not to be ground
states of the bilayer system, they represent intermediate
states between the 111 state and the CFL and are better ap-
proximations of the ground state than either of the latter two
states for intermediate layer separations.

As an example, |2 Fermions) as described in Ref. 34 is
such a filled shell state without CF pairing. In order to show
that our calculation reproduces exactly the state

to be precisely equal to one within the numerical precision
of our calculation: [(2 Fermions|W<FCB(g)—s 0))[?
=0.9999999 = 1075, for an overlap integral evaluated with
5% 10° Monte-Carlo samples.

The agreement we have found supports our claim that we
can indeed generate precisely the mixed CF-CB states intro-
duced in Ref. 34 using our single determinant wave func-
tions. This agreement further supports our interpretation of
the g, as controlling the occupation probability of the respec-
tive CF shell. Note that when choosing g, to be large, this
means that the respective CF states are inert (i.e., the orbitals
are fully filled and they do not participate in nontrivial pair-
ing). It then does not matter whether the pair correlation
function is chosen symmetric or antisymmetric.

In the case of filled CF shells, one can argue that our
paired CF description and the mixed fluid picture from Ref.
34 are identical. However, we also find perfect agreement for
the state where all electrons occupy CF orbitals,
|5 Fermions), which is not a filled shell configuration: the
overlap of the corresponding trial state with the explicitly
constructed CFL state |5 Fermions) was found to be
[(5 Fermions|WCFCB(g . o —))|?=0.999991 =3 X 107>
(evaluated over 10° Monte Carlo samples). As opposed to the
previous case, in order to obtain this agreement, it is required
that the pair correlation function gr be chosen antisymmetric
(see Appendix A). As pointed out in the main text, and dis-
cussed previously in Ref. 13, this agreement is possible only
for cases where the CF sea deviates from a filled shell con-
figuration by at most one electron per layer.

Since the fraction of CFs and CBs is known for the mixed
fluid states, these represent a testing ground for the validity
of Eq. (32). Numerical evaluation indeed confirms that the
correct fraction of CFs p(n,)=Ng(n,)/N; is obtained from
Eq. (32) within about 1% error (see Table III). Typically,
when calculating a Fermi liquid state, =, :p(nf) is slightly
larger than 1 but remains within the same error margin.

Having clarified that the filled CF shell states represent a
subclass of the mixed fluid states in Ref. 34 but with the
advantage that representation (A6) is computationally easier
to evaluate, we may study this class of states up to very large
system sizes.
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We have studied larger systems, focusing our attention to
system sizes of sequence (B1). For a system size correspond-
ing to ny filled shells, we may construct n,+1 different trial
states, notably the 111 state and the states with 1,2,...,n;
filled shells. The state with all shells filled (i.e., the CF Fermi
liquid) gives us a criterion to test whether the parameters g,
have been chosen large enough to transform all particles to
composite fermions. Such a state features no interlayer cor-
relations and, consequently, its interlayer correlation function
should be constant. All one needs to do is to tune the g, until
this situation is reached. Empirically, we have found that
values g, = 1000 satisfy this criterion.

The biggest system analyzed in this way had N=42+42
particles. As the exact ground-state energy is not known for
such large systems, we only compared the different filled
shell states. At zero layer separation, the 111 state is the
exact ground state. Interestingly, states with a small number
of CFs have a very large overlap with the 111 state, such that
MC simulations have difficulty in resolving their difference
in energy. However, there is a general tendency that states
including CFs have lower energy at increasing d. This sug-
gests that a finite fraction of CF could eventually be favor-
able at any finite d in the thermodynamic limit. Going from
small to larger layer separations, states with subsequently
more filled CF-LLs clearly become the most favorable trial
states.

The layer separations d;, where we observed the level
crossings between a first state with ny—1 filled CF shells and
a second one with n; shells filled, are spread out over a large
interval of layer separations ranging from d(f =<0.05¢, to
dsX ~1.5. As stated before, neither of the filled shell states
describes the ground state of the system at the point of their

level crossing. Nonetheless, the anY provide an estimate of
the range of Np/N that would best characterize the ground
state at this layer separation in the absence of CF pairing.
From this kind of reasoning, we can infer that

Ng(n,— 1) < Ng < NF(ns). (B2)
N N & N

Collecting data from level crossings d: at different system

sizes, we established Fig. 9, where we have represented the
complementary ratio of composite bosons Ng/N=1-Ng/N.
For the filled shell states, the ratio Ng/N is related to the
order parameter S=|(S)| via a monotonically growing func-
tion (see the inset of Fig. 9).

Given that CF pairing predominantly lowers the energy of
states that contain a substantial fraction of CFs, the range for
Ng/N indicated in Fig. 9 should be seen as an estimate for
the upper bound of the fraction of bosons. This is most dras-
tically illustrated by the occupation probability of CB orbit-
als pg (for N=5+5 particles) that is given for reference in
this figure. At small layer separations, where the mixed fluid
description is at work, this curve is within the error bars
deduced from the filled shell analysis. However, once the
paired regime is approached, the true occupation of boson
orbitals drops rapidly and the estimate made here clearly
overestimates the actual value.
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FIG. 9. (Color online) Intersections of the energy levels of filled
CF shell states allow deduction of estimates for the range of the
most favorable fraction of CB at the layer separation d* of the point
of intersection. The results for various system sizes as small as
N=5 and as large as N;=42 electrons are represented collectively
in this plot, and show a good coherence. Note that CFs are formed
in the system at very small d. A rough linear extrapolation of these
results suggests that the ratio Ng/N would vanish at approximately
d=1.7¢,. However, CF pairing changes these figures, as highlighted
by the occupation probability pg for Ny=5 that is given for com-
parison. The inset shows the monotonic relationship between the
order parameter S and the fraction of bosons for data from various
filled shell states at different N.

APPENDIX C: NUMERICAL METHODS

As stated in Sec. III, the aim of our numerical simulations
of the bilayer states (25) was to show that they potentially
represent the ground state. However, to achieve an explicit
representation of the ground state at a given layer separation
d, one must find the corresponding set of variational param-
eters {g,,cp}s= 7y, that yields an optimal trial state (assum-
ing a time reversal invariant interaction, all LLL wave func-
tions can be written as polynomials with real coefficients, so
{g,} were considered real). This was realized either by maxi-
mizing the overlap with the exact ground state or by mini-
mizing the energy. Both operations represent nontrivial opti-
mization problems.

In general, optimization algorithms require a large num-
ber of function evaluations before obtaining a good “guess”
of the optimal solution. Furthermore, our calculations were
based upon Monte Carlo simulations, a statistical method
which yields statistical errors vanishing only as the inverse
square root of the number of samples. This means that any
optimization method is bound to make a trade-off between
the uncertainty it allows for the precision of function evalu-
ations and the number of such evaluations it requires.

Monte Carlo sampling to evaluate expectation values is
used in both methods below. Naively, each set y={g,,cp}
requires a separate Monte Carlo simulation, though it is pos-
sible by using correlated sampling to simulate at the same
time many choices of these parameters. A prerequisite for
correlated sampling is that correlations in the simulated wave
functions are similar, such that the ensemble of samples used
is similarly relevant to all of them. With this approach, it is
easy, for example, to numerically evaluate local derivatives
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with respect to the variational parameters. Best results for
our calculations were achieved by using a self-consistent
sampling function F—an expression obtained as a Jastrow
product form exploiting the correlation functions® hzg, cal-
culated in the same run (let the superscript y be a reference
of a distinct trial state). This yields

F= H h%‘((zi - Zj)H hﬁ(wi - Wj)H h%i(zi - Wj), (cn

i<j i<j ij

where 1,1(r)=h | (r) by symmetry. The most important part
in this ansatz are the interlayer correlations hT |» as the intra-
layer correlations are rather similar for all possible choices
of the parameters 7.

1. Energy optimization

Due to the statistical errors that underlie the Monte Carlo
simulations, computation time increases as the inverse
square of the required precision, such that any optimization
scheme using local derivatives of the energy is difficult. It-
erative comparison of neighboring states in correlated sam-
pling is a slow route to optimization. As the results shown in
Sec. IIT unveil, the difficulty of finding a good optimization
scheme suitable for our case is also due to the inherently
good correlations common to all trial functions: further im-
provement only concerns rather small relative differences in
energy.

To meet these challenges, we successfully deployed a
rather subtle optimization method®’ based on iterated diago-
nalization of the Hamiltonian in the space spanned by the
present trial state |W,) and its derivatives with respect to the
variational parameters | W)= (7%|\I’0>. The trial-state represen-
tation for the next iteration can be represented as the Taylor
expansion

|\P> = E Ci|\I’i>’ (C2)
i=0

where c; is the proposed change in the parameters. The val-

ues ¢; may be obtained as the solution of the generalized

eigenvalue problem in this nonorthogonal and incomplete

basis

H|¥)=ESc, (C3)

where S is the overlap matrix S;;=(¥;|W;). Even better re-
sults were obtained using a slightly different basis which was
additionally chosen to be semiorthogonalized with respect to
|W ), such that (W, |W;)=0, i=1,...,n.. The stabilization of
this procedure is discussed in Ref. 67.

2. Optimization of overlaps

Where the exact ground state is known from exact diago-
nalization, we may revert to a simpler method of singling out
the optimal trial wave function of form (25), namely, opti-
mizing the overlap with the exact wave function. Here, the
main difficulty lies in the evaluation of the overlap between
the trial states and the exact ground state: the trial wave
functions are known in real space, results from exact diago-
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nalization are given in the second quantized notations of oc-
cupation in momentum space

D(L.=0)

— i cee ol i cee ol
|\I,exact> - E aacml(a)T Cle(a)Tcml(a)J’ Cle(a)L|0>a
a=1

(C4)

with « denoting a many-body basis state in the Hilbert sub-
space at L.=0 of dimension D(L.=0)> D(L=0), and corre-
sponding amplitudes a,. Converting trial states W, ({z;, w;})
into the second quantized basis is difficult, so overlaps are
calculated in real space with a Monte Carlo evaluation of the
integral over many configurations o=({z;,w;}),

<\I}exact|q}lrial>=fda—q,:xacl(a-)q,tyrial(o-)’ (CS)
based on Wy, ({z;,w:}) ={zi, Wi} | Pexaer)- Each evaluation of
W aci(0) requires the evaluation of D(L,=0) Slater determi-
nants of size N;, which is the most time-consuming opera-
tion. It is therefore advised to generate a sequence of Monte
Carlo samples from the exact wave function only once, and
subsequently use it to calculate overlaps with various trial
wave functions via correlated sampling.

The optimization step of finding the value for the param-
eters ¥,y Which yields the highest overlap turns out to be
rather simple. The Fletcher-Reeves method (a steepest de-
scent algorithm) was found to yield satisfactory results.

APPENDIX D: ANALYSIS OF CORRELATION
FUNCTIONS

In the main text of the paper, we analyzed the energies of
trial states and their overlaps with the exact trial state as a
measure of their performance. Alternatively, one may use a
comparison of the correlation functions as a gauge for cap-
turing the physics of the exact solution. The correlation func-
tions provide more information about the system, which
makes them a more comprehensive measure, but also more
difficult to interpret than a single number as the energy. We
define the pair correlation functions® as

o ()=~ o)
T odpgry TP

where p,(7) is the density in layer o at position 7, and 6 is
defined as the great circle angle between positions 7 and 7.
The normalization is chosen such that i(r— o)=N,,, with

Na’o” = [(N/Z) - 50'0"]/(N/2) . (DZ)

(D1)

This choice accounts for the different number of interacting
particle pairs in the interlayer and intralayer correlations.
Let us first discuss some of the physics revealed by the
correlation functions in the bilayer (see also Ref. 30). Some
correlation functions are shown in Fig. 10 for N=5+5 elec-
trons. The top panel of Fig. 10 shows both the correlation
functions at d=0 and d=0.5€,. Note that for d as small as
d=0.5¢, the correlation hole for small r in the intralayer
correlation function /|| is noticeably enlarged with respect to
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FIG. 10. (Color online) Correlation functions /4 (r) of the re-
spective “best” trial states at layer separations d=0,0.5¢; (top) and
d=1.25¢, (bottom) for a system with 5+5 electrons. The agreement
between the trial wave functions (thin lines with symbols) and the
exact results (bold lines) is significant for any value of d. Even at
small finite d, the correlations A,/ (r) differ noticeably from those
of the 111 state (top). The number of variational parameters em-
ployed is indicated in each case. The small noise in some of the
curves for the trial states is Monte Carlo error.

the 111 state, the exact ground state at d=0. The correlation
hole in the interlayer correlation function ;| is reduced ac-
cordingly, with /;(0) >0. We find that the observed change
in the correlation functions can be understood by exclusively
considering the admixture of CF to the 111 state: the mixed
fluid wave functions (25) perfectly reproduce these correla-
tions.

With growing d, the anticorrelations described by the cor-
relation hole in /| continue to decrease and the correlation
hole in A expands to its full size. For choices of g, that
correspond to sufficiently large numerical values such that
the correlation hole in 2 1l has reached its full size, the shape
of the intralayer correlation function is relatively insensitive
to the precise values of these parameters. This means that
intralayer correlations are coded into the Jastrow factors re-
gardless of the specific (projected) CF orbital. In contrast, the
interlayer correlation function /| has a strong dependence
on the shape of g,.
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FIG. 11. (Color online) Two-point correlation function A(r) of
the Laughlin state as it compares to that of the exact ground state
for Coulomb interactions on the sphere. The good trial energy of the
Laughlin state arises from the precise reproduction of the exact
correlations at short layer separations. However, oscillations at
larger layer separation have stronger amplitude in the ground state.

In Sec. III A of the main text, we highlighted that paired
states without an admixture of CB correlations reproduce
exact ground states down to d~¢€,. As an example for a
correlation function h; in this regime, the bottom panel of
Fig. 10, showing d=1.25¢, features a strong anticorrelation
of electrons in both layers. This correlation hole can thus be
explained entirely in terms of CF pairing, which seems coun-
terintuitive as one would expect pairing to enhance correla-
tions between the layers. With regard to the shape of the pair
wave functions (17) where g(z,w)<(z—w) for p-wave pair-
ing, we can more clearly understand this feature. By virtue of
this property, p,+ip, pairing introduces interlayer anticorre-
lations on short length scales. As the pair wave function is
forced to have a maximum and to decay for r—o, g is
guaranteed to describe a bound state of pairs with some finite
typical distance between the bound particles. Correspond-
ingly, the correlation hole in hy| is accompanied with an
enhanced correlation around r=2¢,,.

In the regime of intermediate layer separation shown in
the bottom panel of Fig. 10, the overlap with the exact
ground state is not quite perfect [the state shown was opti-
mized on the overlap, attaining a value of 0.987(3) for d
=1.25¢€,]. Optimization over either the overlap or the energy
results in highly accurate correlation functions at short dis-
tances, while the large r behavior is weighted lower and may
not be fully reproduced. However, as shown in Fig. 10, the
correlations of the paired CF-CB states are extremely close
to the exact correlation functions. For these variational
states, some of the accuracy at short distances can be traded
for a better reproduction of the large r behavior.

As a prominent reference case, we might cite the correla-
tion function of the Laughlin state. Though the Laughlin
state is a very accurate description of the ground state at
filling factor v=1/3, its correlation function still deviates
noticeably from the correlation of the exact ground state at
large r, as shown in Fig. 11.
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